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ABSTRACT

All pairs similarity search is a problem where a set of data
objects is given and the task is to find all pairs of objects
that have similarity above a certain threshold for a given
similarity measure-of-interest. When the number of points
or dimensionality is high, standard solutions fail to scale
gracefully. Approximate solutions such as Locality Sensi-
tive Hashing (LSH) and its Bayesian variants (BayesLSH
and BayesLSHLite) alleviate the problem to some extent
and provide substantial speedup over traditional index based
approaches. BayesLSH is used for pruning the candidate
space and computation of approximate similarity, whereas
BayesLSHLite can only prune the candidates, but similarity
needs to be computed exactly on the original data. Thus
where ever the explicit data representation is available and
exact similarity computation is not too expensive, BayesLSH-
Lite can be used to aggressively prune candidates and pro-
vide substantial speedup without losing too much on qual-
ity. However, the loss in quality is higher in the BayesLSH
variant, where explicit data representation is not available,
rather only a hash sketch is available and similarity has to
be estimated approximately. In this work we revisit the LSH
problem from a Frequentist setting and formulate sequential
tests for composite hypothesis (similarity greater than or less
than threshold) that can be leveraged by such LSH algo-
rithms for adaptively pruning candidates aggressively. We
propose a vanilla sequential probability ratio test (SPRT)
approach based on this idea and two novel variants. We
extend these variants to the case where approximate sim-
ilarity needs to be computed using fixed-width sequential
confidence interval generation technique. We compare these
novel variants with the SPRT variant and BayesLSH/Bayes-
LSHLite variants and show that they can provide tighter
qualitative guarantees over BayesLSH/BayesLSHLite – a state-
of-the-art approach – while being upto 2.1x faster than a
traditional SPRT and 8.8x faster than AllPairs.
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1. INTRODUCTION
Similarity search in a collection of objects has a wide va-

riety of applications such as clustering [17], semi-supervised
learning [22], information retrieval [6], query refinement on
websearch [1], near duplicate detection [21], collaborative
filtering, and link prediction [15]. Formally, the problem
statement is: Given a collection of objects D and an asso-
ciated similarity measure sim(., .) and a similarity threshold
t, the problem is to find all pairs of objects x, y, such that
sim(x, y) ≥ t, where x, y ∈ D.

The major challenge here is dealing with the large vol-
ume of data. The volume combined with high dimensional-
ity of datasets can lead to inefficient solutions to this prob-
lem. Recent research has focused on reducing the candidate
search space. The AllPairs [1] candidate generation algo-
rithm builds a smart index structure from the vector rep-
resentation of the points to compute exact similarity. An-
other approach is to do an approximate similarity calcula-
tion that involves sacrificing small accuracy for substantial
speedup. The most popular technique is locality sensitive
hashing (LSH) [11, 8] that involves projecting the high di-
mensional data into a lower dimensional space and similarity
of a pair of points is approximated by the number of match-
ing attributes in the low dimensional space.

A recent idea, BayesLSHLite [19], adopts a principled
Bayesian approach on top of LSH and AllPairs to reason
about and estimate the probability that a particular pair of
objects will meet the user-specified threshold. Unpromising
pairs are quickly pruned away based on these estimates real-
izing significant performance gains. The way BayesLSHLite
works is, for a pair of data objects x, y, BayesLSHLite incre-
mentally compares their hashes (in batches of size b) and in-
fers after each batch, how likely is it that pair will have sim-
ilarity above the threshold. If that probability becomes too
low, then the candidate pair is pruned away. The above algo-
rithm has a variant called BayesLSH, where after the candi-
date pruning is done, similarity is estimated approximately
from the hash signatures instead of exact computation. This
is useful in cases where exact similarity computation is in-



feasible. Exact similarity computation might be infeasible in
cases where the original data was too large to store and the
small hash sketch of the data was stored instead. Another
scenario could be where the similarity measure-of-interest is
a kernel function and exact representation of the data points
in the kernel induced feature space is not possible as that
space might be infinite dimensional (e.g. Gaussian RBF
kernel). Additionally, the specialized kernel functions are
extremely expensive to compute on the fly. In such cases,
both candidate generation and similarity estimation has to
be done approximately using the LSH hash sketches.

In this paper we adapt a Frequentist view of this idea
and propose a fully principled sequential model to do the
incremental pruning task with rigorous quality guarantees.
Specifically, we model the problem of sim(x, y) ≥ t as a se-
quential hypothesis test problem and provide quality guar-
antees through Type I and Type II errors. We start with
the traditional SPRT [20], and show that it is extremely
inefficient in practice, making it unsuitable for large scale
analytics. We then propose an alternate sequential hypoth-
esis test procedure based on a one-sided fixed-width confi-
dence limit construction technique. Finally we show that
no single hypothesis testing strategy works well for all sim-
ilarity values. Therefore, we propose a fine-grained hybrid
hypothesis testing strategy, that based on a crude estimate
of the similarity from the first batch of hash comparisons for
that specific candidate pair, selects the most suitable test for
that pair. In other words, instead of using a single hypoth-
esis test, we dynamically choose the best suited hypothesis
test for each candidate pair. We extend the above tech-
nique to develop a variant, that after candidate pruning, es-
timates the approximate similarity by using the fixed-width
two-sided confidence interval generation technique [7]. Our
ideas are simple to implement and we show that our hybrid
method always guarantees the minimum quality requirement
(as specified by parameters input to the algorithm), while
being upto 2.1x faster than an SPRT-based approach and
8.8x faster than AllPairs while qualitatively improving on
the state-of-the-art BayesLSH/Lite estimates.

2. BACKGROUND

2.1 Locality Sensitive Hashing
Locality sensitive hashing [11, 8] is a popular and fast

method for candidate generation and approximate similar-
ity computation within a large high dimensional dataset.
Research has demonstrated how to leverage the key princi-
ples for a host of distance and similarity measures [2, 11, 5,
3, 17, 10]. Briefly, each data point is represented by a set of
hash keys using a specific hash family for a given distance
or similarity measure (sim). Such a family of hash function
is said to have the locality sensitive hashing property if:

Ph∈F (h(x) == h(y)) = sim(x, y) (1)

where x, y are any two points in the dataset, and h is a
randomly selected hash function from within a family F of
hash functions. Consequently, the approximate similarity
between the pair can be estimated as:

ˆsim(x, y) =
1

n

n
X

i=1

I [hi(x) == hi(y))]

where n is the total number of hash functions and I is the
indicator function.

2.2 Candidate generation
We use AllPairs [1] candidate generation algorithm when

the original data set is available. The AllPairs candidate
generation algorithm is exact, hence all true positives (can-
didates with similarity above the threshold) will be present
in the set of candidates generated. The AllPairs algorithm
builds an index from the vector representation of data and
instead of building a full inverted index, AllPairs only in-
dexes the information that may lead to a pair having sim-
ilarity greater than the specified threshold. The AllPairs
algorithm can be used when the original dataset is small
enough to be stored entirely and the similarity of interest is
computed on the original feature space (unlike kernel simi-
larity measures).

In cases where the entire dataset cannot be stored, rather
a small sketch of it is available, AllPairs cannot be used.
Additionally, if the similarity is a kernel function and the
feature space of that kernel cannot be explicitly represented,
AllPairs will not work as it relies on the explicit representa-
tion. However, in both scenarios we can use LSH to generate
a low dimensional sketch of the dataset and use the proba-
bilistic candidate generation algorithms [2, 11, 5, 3, 17, 10]
to build the index. The advantage of such an index structure
is that for a query point similarity search can be be done in
sublinear time. LSH based index structures perform well
compared to traditional indices when the dimensionality of
the data set is very high. The algorithm is as follows:

1. Using a LSH method for a given similarity measure,
form l signatures for each data point, each signature
having k hash keys.

2. Each pair of points that share at least one signature
will stay in the same hash bucket.

3. During all pairs similarity search, for each point, only
those points which are in the same bucket needs to be
searched.

4. From [21], for a given k and similarity threshold t, the
number of signatures l required for a recall 1 − φ,

l = ⌈
log(φ)

log(1 − tk)
⌉

2.3 Candidate Pruning using BayesLSH/Lite
Traditionally maximum likelihood estimators are used to

approximate similarity of a candidate pair. For the candi-
date pair, if there are a total of n hashes and m of them
match, then the similarity estimate is m

n
. The variance of

this estimator is s(1−s)
n

where s is the similarity of the can-
didate pair. Two issues to observe here are - 1) as n in-
creases, the variance decreases and hence the accuracy of
the estimator increases, 2) more importantly, the variance
of the estimator depends on the similarity of the pair it-
self. This means for a fixed number of hashes, the accuracy
achieved if the similarity of the candidate pair was 0.9 is
higher than if the similarity was 0.5. In other words the
number of hashes required for different candidate pairs for
achieving the same level of accuracy is different. Therefore,
the problem with fixing the number of hashes is - some of
the candidate pairs can be pruned by comparing the first



few hashes only. For example if the similarity threshold is
0.9 and 8 out of the first 10 hashes did not match, there
is very low probability that the similarity of the pair is
greater than 0.9. The BayesLSH/Lite[19] is among the earli-
est approaches to solve this problem of fixing the number of
hashes. Instead it incrementally compares hashes until the
candidate pair can be pruned with a certain probability, or
the maximum allowed hash comparisons is reached. It will
then compute exact or approximate similarity. To do the in-
cremental pruning, BayesLSHLite solves the inference prob-
lem P (sim(x, y) ≥ t), where t is the similarity threshold.
Additionally, the BayesLSH variant estimates the approxi-
mate similarity by creating an interval for the true similarity

by the solving the inference P (|sim(x, y) − ˆsim(x, y)| ≤ δ).
Both inferences are solved using a simple Bayesian model.
These inferences help overcome the problem pointed above
- number of hashes required to prune a candidate or build
an interval around it adaptively set for each candidate pair.

Let us denote the similarity sim(x, y) as the random vari-
able S. Since we are counting the number of matches m out
of n hash comparison, and the hash comparisons are i.i.d.
with match probability S as per equation 1, the likelihood
function becomes a binomial distribution with parameters
n and S. If M(m, n) is the random variable denoting m
matches out of n hash bit comparisons, then the likelihood
function will be:

P (M(m,n)|S) =

 

n

m

!

Sm(1 − S)n−m (2)

In the Bayesian setting, the parameter S can be treated
as a random variable. Let the estimate of S in this setting
be Ŝ. Using the aforementioned likelihood function, the two
inference problems become:

Early pruning inference: given m matches out of n
bits, what is the probability that the similarity is above
threshold t:

P [S ≥ t |M(m,n)] =

Z 1

t

P (S |M(m, n))dS (3)

Concentration inference: given the similarity estimate
Ŝ, what is the probability that it falls within δ of the true
similarity:

P [|S − Ŝ| < δ |M(m, n)] = P [Ŝ − δ < S < Ŝ + δ |M(m, n)]

=
R Ŝ+δ

Ŝ−δ
P (S |M(m, n))dS (4)

The BayesLSHLite algorithm works as follows:
For each pair x,y:

1. Compare the next b hashes and compute the early prun-
ing probability P [S ≥ t |M(m, n)].

2. If P [S ≥ t |M(m, n)] < α, then prune the pair and
stop.

3. If maximum allowable hash comparisons have been reached,
compute exact similarity and stop.

4. Go to step 1.

The BayesLSH variant works as follows:
For each pair x,y:

1. Compare the next b hashes and compute the early prun-
ing probability P [S ≥ t |M(m, n)].

2. If P [S ≥ t |M(m, n)] < α, then prune the pair and
stop.

3. If P [|S − Ŝ| < δ |M(m, n)] > 1 − γ, then output pair

x, y if Ŝ ≥ t and stop.

4. If maximum allowable hash comparisons have been reached,
then output pair x, y if Ŝ ≥ t and stop.

5. Go to step 1.

3. CASE FOR FREQUENTIST FORMULA-

TION
The BayesLSH/Lite candidate pruning and approximate

similarity estimation algorithms as described in the previous
section, provide the basis for the current work. Specifically
in this work we examine the same problems they attempt
to solve but in a Frequentist setting. BayesLSH/Lite makes
a simplifying assumption potentially leading to somewhat
weak bounds on error. Specifically, BayesLSH/Lite tries to
model an inherently sequential decision process in a non-
sequential way. The inferences (equations 3 and 4) in the
BayesLSH/Lite algorithms are done every b hash compar-
isons (this can be viewed as a bin of comparisons). There-
fore, for a candidate pair, if the pruning inference is done
once, then the error probability rate will α, but when it
is done for the second time, probability of the pair getting
pruned will be determined by getting pruned the first time
(first bin) and the probability of getting pruned the second
time (a cumulative of the first and second bin matches). Es-
sentially, we argue that this error may propagate resulting
in an accumulated error over multiple pruning inferences.
The same scenario is true for the concentration inference
as well (equation 4). Over multiple concentration inferences
done incrementally, the coverage probability could fall below
1−γ. We note that in practice this may not be a significant
issue but the question remains can this problem be fixed
(in the rare cases it may materialize) without significantly
impacting the gains obtained by BayesLSH/Lite. We note
that fixing this problem in a Bayesian setting remains open
but in this work we show how this problem can be fixed to
guarantee tighter error bounds in a Frequentist setting.

Another issue, again a minor one, is when a pair is un-
likely to be above a certain similarity threshold, pruning
it early saves hash comparisons, similarly when a pair is
very likely to be above the threshold, hash comparison for it
should stop immediately and it should be processed for ex-
act/approximate similarity computation. This can also save
a number of hash comparisons.

To overcome these problems, we propose to model the
problem in a Frequentist setting as follows. In the frequen-
tist setting let the similarity sim(x, y) be denoted by the
parameter s (instead of S as in Bayesian setting).

• We model the early pruning inference s > t as a se-
quential hypothesis test problem that should be able to
guarantee Type I and Type II errors under the sequen-
tial hash comparison setting and if possible, it should
be able to early prune a pair or send a pair for ex-
act/approximate similarity computation.

• We model the concentration inference |s − ŝ| ≤ δ as
a sequential two-sided fixed-width confidence interval
creation problem that should be able to guarantee a
certain coverage probability.



4. METHODOLOGY
In this section, we describe a principled way of doing the

early pruning inference (equation 3) and the concentration
inference (equation 4) under the sequential setting where the
number of hash functions (n) is not fixed, rather it is also a
random variable.

4.1 Early Pruning Inference
We use sequential tests of composite hypothesis for prun-

ing the number of generated candidates, so that the cardi-
nality of the remaining candidate set is very small. There-
fore, exact similarity computation on the remaining set of
candidate pairs becomes feasible in terms of execution time,
provided the original data set is available and the similarity
function can be computed on the feature space of the original
data. Our pruning algorithm involves sequentially compar-
ing the hashes for a pair of data objects and stop when we
are able to infer with some certainty whether the similarity
for the pair is above or below the user defined threshold. If,
according to the inference, the similarity of the pair is be-
low the threshold, then we prune away the pair, otherwise
we compute exact or approximate similarity of the pair de-
pending on which variant we are using. More formally, if the
similarity of the pair is s and the user defined threshold is t,
we need to solve the hypothesis test, where the null hypoth-
esis is H0 : s ≥ t and the alternate hypothesis is H1 : s < t.
Two interesting aspects of our problem formulation are:

1. For performance reasons as described in section 3, we
do not want to fix the number of hashes to compare for
the hypothesis test, but rather incrementally compare
the hashes and stop when a certain accuracy in terms
of Type I error has been achieved.

2. We focus on Type I error, i.e. we do not want to prune
away candidate pairs which are true positives (s ≥ t).
We can allow false positives (s < t) in our final set,
as either exact similarity computation or approximate
similarity estimation will be done on the final set of
candidate pairs and any false positives can thus be
pruned away. In other words, we do not need to pro-
vide guarantees on Type II error of the hypothesis test.
Of course keeping a low Type II error implies less false
positives to process, resulting in better performance.

We discuss three strategies for formulating the hypothesis
test. First, we cast our problem in a traditional Sequential
Probability Ratio Test (SPRT) [20] setting and then discuss
the shortcomings of such an approach. Second, we then de-
velop a sequential hypothesis test based on a sequential fixed
width one-sided confidence interval (CI) and show how it can
overcome some of the limitations of traditional SPRT. We
empirically find that even this test does not always perform
better than the more traditional SPRT. Third, building on
the above, we propose a hybrid approach (HYB), where we
dynamically select the hypothesis test (SPRT or CI) based
on the similarity of each candidate pair which we crudely
estimate from the first few comparisons. In other words,
instead of using a single fixed hypothesis test, we select one
which is best suited for the candidate pair being estimated.

For a candidate pair x, y with similarity s, the probability
of a hash matching is s for a locality sensitive hash func-
tion as described in equation 1. Therefore, given n hashes
for the pair, the probability that m of them will match

follows a binomial distribution with parameters n and s.
This is because the individual hash matching probabilities
are identically and independently distributed Bernoulli with
parameter s. So our problem formulation reduces to doing
sequential hypothesis test on a binomial parameter s.

4.1.1 Sequential Probability Ratio Test

We use the traditional sequential probability ratio test by
Wald [20] as our first principled sequential model for match-
ing LSH signatures, to decide between s ≥ t or s < t. For
the purpose of this model we swap the null and alternate
hypotheses of our formulation. We do this because the re-
sulting formulation of the hypothesis test H0 : s < t vs.
H1 : s ≥ t, where s is a binomial parameter, has a well
known textbook solution (due to Wald). The important
thing to recollect is that we care more about Type I error
in our original formulation. Therefore under the swapped
SPRT setting, we care about the Type II error. That is eas-
ily done as SPRT allows the user to set both Type I and
Type II errors, and we set Type II error to be α. To solve
a composite hypothesis test using SPRT for a binomial pa-
rameter s, the first step is to choose two points t + τ and
t−τ . Now the SPRT becomes a simple hypothesis test prob-
lem of H0 : s = s0 = t − τ vs. H1 : s = s1 = t + τ . The
algorithm works as follows:

1. Incrementally compare batches of size b hashes until

log( α
1−β

)

log( s1

s0
) − log( 1−s1

1−s0
)

+ n
log( 1−s0

1−s1
)

log( s1

s0
) − log( 1−s1

1−s0
)

< ŝ

<
log( 1−α

β
)

log( s1

s0

) − log( 1−s1

1−s0

)
+ n

log( 1−s0

1−s1

)

log( s1

s0

) − log( 1−s1

1−s0

)

Here n is the cumulative number of hash comparisons
till now, and ŝ = m/n, where m is the cumulative
number of hash matches up to that point.

2. Reject null hypothesis (conclude s ≥ t) if,

ŝ ≥
log( 1−α

β
)

log( s1

s0
) − log( 1−s1

1−s0
)

+ n
log( 1−s0

1−s1
)

log( s1

s0
) − log( 1−s1

1−s0
)

3. Fail to reject null hypothesis (conclude s < t) if,

ŝ ≤
log( α

1−β
)

log( s1

s0
) − log( 1−s1

1−s0
)

+ n
log( 1−s0

1−s1
)

log( s1

s0
) − log( 1−s1

1−s0
)

SPRT is a cumulative likelihood ratio test, and is an op-
timal test with guaranteed Type I and Type II errors, when
the hypotheses are simple. In the case of composite hypoth-
esis (across bins of hashes), no optimality guarantees can be
given, and consequently, to make a decision, SPRT typically
takes a large number of hash comparisons. This results in
extremely slow performance as we will empirically validate.
We next describe the confidence interval based test.

4.1.2 One-Sided-CI Sequential Hypothesis Test

4.1.2.1 Constructing the confidence interval (CI).
The true similarity s of pair of data objects x, y can be

estimated as ŝ = m
n

, where m is the number of hashes that
matched out of n hash comparisons. It can be shown that
ŝ is the maximum likelihood estimate of s [18]. Following



standard convention we denote this estimator as Ŝ (random
variable, distinguished from its realization, ŝ). Here we de-
scribe the procedure for constructing a fixed-width (say w)
upper confidence interval for s with 1−α coverage probabil-
ity. More formally, we want to continue comparing hashes
and estimating similarity until,

P (s < Ŝ + w) = 1 − α (5)

Here ŝ + w is the upper confidence limit for s with 1 − α
coverage probability. We use an approach similar to Frey [7]
to solve this problem.

Stopping rule for incremental hash comparisons: We
use the Wald confidence interval for binomial as our stopping
rule. Formally, for some value λ, and a fixed confidence
width w, we incrementally compare batches of b hashes and

stop when zλ

q

ŝa(1−ŝa)
n

≤ w. Then the upper confidence

limit can be reported as min(ŝ + w, 1.0). Here ŝa = m+a
n+2a

,
where a is a very small number. ŝa is used instead of ŝ
because, if the batch size is extremely small, and number of
matches is 0 (or it is the maximum, i.e., all match), then the
confidence width becomes 0 after the first batch if ŝ is used.

Finding λ: In a non-sequential setting, the Wald upper
confidence limit as described above will have a coverage
probability of 1 − λ. But in a sequential setting, where
the confidence interval is tested after every batch of hash
comparisons, the coverage probability could fall below 1 −
λ. Hence to ensure coverage probability of at least 1 − α,
λ should be set less than α. Given the set of stopping
points and a λ, we can compute the coverage probability
CP(λ) of our one-sided confidence interval using the path-
counting technique [9]. Suppose the stopping points are
(m1, n1), (m2, n2), ....., (mk, nk) and H(m,n) is the number
of ways to do n hash comparisons with m matches, without
hitting any of the stopping points. Therefore, the probabil-
ity of stopping at stopping point (mi, ni) is H(mi, ni)s

mi(1−
s)ni−mi . Since the incremental hash comparison process is
guaranteed to stop, probability of stopping at all the stop-
ping points should sum to 1. This implies

k
X

i=1

H(mi, ni)s
mi(1 − s)ni−mi = 1

Consequently, the coverage probability for similarity s will
be

T (s, λ) =
k
X

i=1

H(mi, ni)s
mi(1− s)ni−miI(s ≤

mi

ni

+ w) (6)

Here I is the indicator function of whether the stopping
point is within the correct interval width w. Now the overall
coverage probability can be computed as,

CP (λ) = mins∈[0,1]T (s, λ) (7)

For our one-sided confidence interval to have at least 1 − α
coverage probability, we need to find λ such that CP (λ) ≥
1 − α. The function H(m,n) can be solved using the path-
counting recurrence relation:

H(m,n + 1) =H(m,n)ST (m,n)

+ H(m − 1, n)ST (m − 1, n)

Here ST (m,n) is the indicator function of whether (m, n) is
a non-stopping point. The base of the recursion is H(0, 1) =

H(1, 1) = 1. With a fixed λ, ST (m, n) can be computed us-
ing the Wald stopping rule as described before, and H(m,n)
can be hence computed by the aforementioned recurrence
relation. Then we need to solve equation 7 to find out the
confidence coefficient of our one-sided interval. T (s, λ) is a
piecewise polynomial in s with jumps at the points in the
set C = {0, mi

ni

+ w,∀i = 1 to k and mi

ni

+ w ≤ 1}. CP (λ)

is then approximated numerically by setting s = c ± 10−10,
where c ∈ C and taking the minimum resulting T (s, λ). Now
that we know how to compute CP (λ), we use bisection root-
finding algorithm to find a λ for which CP (λ) is closest to
our desired coverage probability 1 − α.

4.1.2.2 Constructing the Hypothesis Test.
In the previous section we described a procedure for cre-

ating a fixed-width once-sided sequential upper confidence
limit with coverage probability 1 − α. In this section, we
describe the process to convert the one-sided upper confi-
dence interval to a level-α hypothesis test using the duality
of confidence intervals and hypothesis tests.

Lemma 4.1. If ŝ + w be an upper confidence limit for s
with coverage probability 1 − α, then a level − α hypothesis
test for null hypothesis H0 : s ≥ t against alternate hypoth-
esis H1 : s < t will be to Reject H0, if ŝ + w < t, else Fail
to Reject H0.

Proof. By equation 5,

P (Ŝ + w ≥ s) = 1 − α

=⇒ P (Ŝ + w ≥ t|s ≥ t) ≥ 1 − α

=⇒ −P (Ŝ + w ≥ t|s ≥ t) ≤ −1 + α

=⇒ 1 − P (Ŝ + w ≥ t|s ≥ t) ≤ α

=⇒ P (Ŝ + w < t|s ≥ t) ≤ α

=⇒ P (Reject H0|H0) ≤ α

4.1.2.3 Choosing w.
The fixed-width w of the one-sided upper confidence in-

terval has a significant effect on the efficiency of the test.
Intuitively, the larger the width w, the less the number of
hash comparisons required to attain a confidence interval of
that width. However, setting w to a very high value would
result in a large Type II error for our test. Though our
algorithm’s quality is not affected by Type II error (since
we compute exact or approximate similarity when alternate
hypothesis is satisfied), but still a large Type II error will
imply that many false positives (candidates which fall in
alternate hypothesis, but are classified as null hypothesis).
Exact/approximate similarity is computed and these candi-
dates are pruned away. Therefore, a large Type II error will
translate to lower efficiency. In other words, making w too
high or too low will cause significant slowdown in terms of
execution time.

We next describe a simple heuristic to select w. Suppose
a candidate pair has similarity s < t, i.e. for this candidate
pair, the null hypothesis should be rejected. So the upper
confidence limit ŝ+w can be as high as t, and our test statis-
tic should still be able to reject it. Therefore, the maximum



Figure 1: Estimating w

length of w is dictated by how large the upper confidence
limit can be. So instead of presetting w to a fixed value, we
dynamically set w according to the following heuristic. We
compare the first batch of hashes and use the crude estimate
of s, say ŝi from the first batch to come up with w:

w = t − ŝi − ǫ (8)

The key insight here is, instead of using a single hypothesis
test for all candidate pairs, we choose a different hypothe-
sis test based on an initial crude similarity estimate of the
candidate pair being analyzed, so that w can be maximized,
while still keeping Type II error in control, resulting in effi-
cient pruning. Note that every such test is a level − α test
according to Lemma 4.1. We need the ǫ parameter as ŝi is
a crude estimate from the first batch of hash comparisons
and it could be an underestimate, which would result in an
overestimate of w. Consequently, the final test statistic ŝ+w
can go beyond t and the candidate cannot be pruned. Fig-
ure 1 explains the phenomenon. Of course, dynamically con-
structing the test for each candidate can make the candidate
pruning process inefficient. We solve this issue by caching
a number of tests for different w and during the candidate
pruning step, the test that is closest to w (but smaller than
or equal to it) is selected. Hence there is no need for online
inference, making the algorithm very efficient.

4.1.3 Hybrid Hypothesis Tests

We found out empirically that the number of hash com-
parisons required by SPRT is very high for our composite
hypothesis test problem. The one-sided CI based tests per-
formed considerably better. Specifically we saw that the
candidate pairs whose actual similarity s is quite far away
from the threshold t were very quickly classified into the null
or alternate hypothesis as the width w is quite large. But
interestingly, for the candidate pairs which have similarity
very close to the threshold, the estimated parameter w be-
comes very small. For such pairs, to attain the fixed-width
confidence interval, the number of hash comparison require-
ment is very high. It is even higher than the more traditional
SPRT. Therefore, to utilize the best of both worlds, we use
a hybrid hypothesis testing strategy, where based on how
far the true similarity is away from the threshold, we either
select a one-sided CI based hypothesis test, or the SPRT.
Formally, we use a parameter µ, such that if the estimated
fixed-width w ≥ µ, we use the one-sided CI based hypothesis
test, else we use SPRT. Again, in this hybrid strategy all
the tests are level−α, so we have guarantees on the overall
Type I error, while minimizing the number of overall hash
comparisons by smarty selecting the proper test for a specific
candidate.

4.2 Concentration Inference
To solve the concentration inference of equation 4, we can

create a two-sided fixed-width confidence interval for a bino-
mial proportion under the sequential setting. The technique
is very similar to the one we described in section 4.1.2 for
the one-sided upper confidence limit. The major difference
is, for two-sided confidence interval, the coverage probability
equation 6 from section 4.1.2 becomes:

T (s, λ) =

k
X

i=1

H(mi, ni)s
mi(1 − s)ni−miI(|s −

mi

ni

| ≤ δ)

Now this equation can be solved in a manner similar to the
one described in section 4.1.2 to find out the critical value λ
and hence the stopping points in the sequential process. The

stopping rule will also change to z λ

2

q

ŝa(1−ŝa)
n

≤ δ (in the

one-sided case λ was used instead of λ
2
). The concentration

inference is used to estimate the similarity with probabilis-
tic guarantees under circumstances where exact similarity
computation is infeasible.
Choosing maximum number of hashes: In our problem
scenario, we do not need all candidates to converge to a
fixed-width interval. Since we guarantee 1 − α recall, any
candidate pair which has less than α probability of being
greater than t can be ignored. In other words, we do not need
to consider all the stopping points generated. We can choose
the stopping points based on the user defined threshold t.

Lemma 4.2. If mi, ni are the stopping points decided by
the fixed-width confidence interval method having coverage
probability 1− γ, the stopping points mi, ni, such that mi

ni
<

t−δ can occur with probability at most γ if the true similarity
s is greater than threshold t.

Proof. By the fixed-width confidence interval guarantee,

P (Ŝ − δ ≤ s ≤ Ŝ + δ) = 1 − γ

=⇒ P (s > Ŝ + δ or s < Ŝ − δ) = γ

=⇒ P (Ŝ < s − δ) ≤ γ

This implies for s > t, the probability of ŝ < t − δ is less
than γ. For all the stopping points mi, ni, ŝ = mi

ni

. Hence

the proof.

Corollary 4.3. If mi, ni are the set of stopping points,
the maximum number of hashes nmax required by our algo-
rithm to estimate any similarity above t while ensuring 1−γ
recall is nmax = max(ni) s.t. mi

ni
≥ t − δ.

If we set γ = α, the above lemma will ignore points which
have less than α probability of being a true positive. In
other words, our algorithm is able to guarantee 1−α recall.

4.3 Similarity Measures
The proposed techniques in this paper can be used with

similarity measures for which a locality sensitive hash func-
tion exists. Previous work has developed locality sensitive
hash functions for a wide range of similarity measures [2, 11,
5, 3, 17, 10] as well as for arbitrary kernel functions [12]. In
this paper, we show that our methods work well with two of
the most popular similarity measures - i) Jaccard similarity
and ii) Cosine similarity.



4.3.1 Jaccard Similarity

The locality sensitive hash function relevant to Jaccard
similarity is MinWise Independent Permutation, developed
by Broder et al [2]. This hash function can approximate the
Jaccard coefficient between two sets x, y. Formally,

P (h(x) == h(y)) =
|x ∩ y|

|x ∪ y|

The estimate of Jaccard similarity between x, y will be:

ŝ =
1

n

n
X

i=1

I [hi(x) == hi(y))]

As described earlier in equation 2, the likelihood function
for getting m matches out n hashes is a binomial with pa-
rameters n, s. Note that n is also a random variable here.
Hence we can directly use our proposed methods for doing
inference on s.

4.3.2 Cosine Similarity

The locality sensitive hash function for cosine similarity
is given by the rounding hyperplane algorithm, developed by
Charikar [4]. However, the similarity given by the above
algorithm is a little different from cosine similarity. Specifi-
cally, such a hash function gives:

P (h(x) == h(y)) = 1 −
θ

π

where θ is the angle between the two vectors. Let the above
similarity be defined as s and let the cosine similarity be r.
The range of s is therefore, 0.5 to 1.0. To convert between
s and r, we need the following transformations:

r = cos(π(1 − s)) (9)

s = 1 −
cos−1(r)

π
(10)

Consequently, we need to adapt our proposed algorithms
to handle these transformations. Handling the pruning in-
ference is quite simple. If the user sets the cosine simi-
larity threshold as t, before running our pruning inference,
we change the threshold to the value of the transformed
similarity measure. So the pruning inference becomes s ≥

(1 − cos−1(t)
π

) instead of s ≥ t.
The transformation of the concentration inference is trick-

ier. We need to transform the confidence interval of s ( our
algorithm will generate this) to the confidence interval of r
(for cosine similarity). The user provides an estimation er-
ror bound δ, implying that we need to generate an estimate
r̂ within a confidence interval of 2δ with 1−γ coverage prob-
ability. Since we can only estimate ŝ, we need to create a
level-(1 − γ) confidence interval 2δs around ŝ, such that, if
ls ≤ s ≤ us and lr ≤ r ≤ ur then,

us − ls ≤ 2δs =⇒ ur − lr ≤ 2δ

If we create, a 2δs fixed-width confidence interval, then the
upper and lower confidence limits will be ŝ + δs and ŝ − δs

respectively. Since r is a monotonically increasing function
of s, hence the upper and lower confidence limit of r (cosine
similarity) will be cos(π(1−min(1.0, ŝ+δs))) and cos(π(1−
max(0.5, ŝ−δs))) respectively. The interval for the estimate
of cosine similarity will be cos(π(1 − min(1.0, ŝ + δs))) −
cos(π(1−max(0.5, ŝ−δs))). We have to choose δs such that

cos(π(1−min(1.0, ŝ+δs)))−cos(π(1−max(0.5, ŝ−δs))) ≤ 2δ

Dataset Vectors Dimensions Avg. Len Nnz

Twitter 146,170 146,170 1369 200e6

WikiWords100K 100,528 344,352 786 79e6

RCV 804,414 47,236 76 61e6

WikiLinks 1,815,914 1,815,914 24 44e6

Orkut 3,072,626 3,072,66 76 233e6

Table 1: Dataset details

The above function is monotonically decreasing in ŝ. So the
interval will be largest when ŝ is smallest (0.5). So we set
ŝ to 0.5 and numerically find out largest δs such that the
inequality of the above expression is still satisfied.

5. EXPERIMENTAL EVALUATION

5.1 Experimental Setup and Datasets
We ran our experiments on a single core of a AMD Opteron

2378 machine with 2.4GHz cpu speed and 32GB of RAM.
We only use one core as our application is a single threaded
C++ program. We use five real world datasets to evaluate
the quality and efficiency of our allpairs similarity search
algorithms. Details are given in Table 1
Twitter: This is a graph representing follower-followee links
in Twitter [13]. Only users having at least 1000 followers are
selected. Each user is represented as an adjacency list of the
users it follows.
WikiWords100K and WikiLinks: These datasets are
derived from the English Wikipedia Sep 2010 version. The
WikiWords100K is a preprocessed text corpus with each
article containing at least 500 words. The Wikilinks is a
graph created from the hyperlinks of the entire set of arti-
cles weighted by tf-idf.
RCV: This is a text dataset consisting of reuters articles [14].
Each document is represented as a set of words. Some basic
preprocessing such as stop-words removal and stemming is
done.
Orkut: The Orkut dataset is a friendship graph of 3 million
users weighted by tf-idf [16].

5.2 Results
As explained in section 4 (methodology), we expect Bayes-

LSH/Lite variants to be very fast, however those could po-
tentially suffer a loss in the qualitative guarantees as they
model an inherently sequential process in a non-sequential
manner. Since the sequential confidence interval based meth-
ods have provable guarantees about quality (lemmas 4.1
and 4.2), they are always expected to be qualitatively bet-
ter. The SPRT and hence the Hybrid methods should qual-
itatively perform very well, however under the composite
hypothesis testing scenario, SPRT cannot provide strong
guarantees. In the next two sections we will evaluate these
premises.

5.2.1 Algorithms using Early Pruning and Exact Sim-
ilarity Computation

We compare the following four strategies for computing all
pairs with similarity above a certain user defined threshold.
All of these algorithms assume that the original dataset is
available (instead of the smaller sketch). These algorithms
use the exact candidate generation technique AllPairs [1]
and an early pruning technique and finally exact similarity
computation.



BayesLSHLite: BayesLSHLite [19] is the state-of-the-art
candidate pruning algorithm which is known to perform bet-
ter than AllPairs [1] and PPJoin [21].
SPRT: We use the traditional Sequential Probability Ratio
Test to do the early pruning of candidates. We set τ = 0.025.
One-Sided-CI-HT: We compare against our model, which
is the fixed-width one-sided upper confidence interval based
hypothesis testing technique. We set ǫ = 0.01. The choice of
ǫ is done by empirically evaluating several values – we found
values in the neighborhood of 0.01 − 0.05 worked best. We
set a = 4 as it seems to work well in practice [7].
Hybrid-HT: This is the second model we propose, where
based on the candidate in question, we either choose a One-
Sided-CI-HT or SPRT. We set µ = 0.18, that is the thresh-
old of w below which our Hybrid-HT algorithm switches
from a One-Sided-CI-HT to SPRT. Again, we selected µ,
empirically by trying different thresholds. For all the tests
above, we set the Type I error or recall parameter 1 − α =
0.97. We also compare with the AllPairs algorithm which
uses exact similarity computation right after the candidate
generation step (no candidate pruning).

The performance and quality numbers are reported in Fig-
ure 2. We measure performance by total execution time and
we measure quality by recall (since we are giving proba-
bilistic guarantees on recall). An added advantage of these
methods is that since we compute exact similarity for all
candidates that are retained and check whether they are
above the threshold using exact similarity computation, all
the strategies yield full precision (100%). Further more, the
sequential hypothesis tests we do are truncated tests, i.e. we
compute at most h = 256 hashes, after which if a decision
cannot be made, we send the pair for exact similarity compu-
tation. We report results on all the aforementioned datasets
on both Jaccard and cosine similarity measures. For Jac-
card, we vary the similarity threshold from 0.3− 0.7 and for
cosine, we vary the threshold from 0.5 − 0.9. These are the
same parametric settings used in the original BayesLSHLite
work.

Results indicate that the pattern is quite similar for all
datasets. BayesLSHLite is always substantially faster in
case of cosine similarity while in case of Jaccard similar-
ity, AllPairs is marginally faster at times. At high values of
the similarity threshold, SPRT is the slowest, while both
One-Sided-CI-HT and Hybrid-HT performs very close to
BayesLSHLite. This performance benefit comes from the
one-sided tests. More precisely, choosing the width w of the
test based on the estimate from the first bin of hash com-
parisons makes each test optimized for the specific candidate
being processed. Those tests are extremely efficient at prun-
ing away false positive candidates whose true similarities are
very far from the similarity threshold t. The reason is these
tests can allow a larger confidence width w and hence less
number of hash comparisons. Obviously the Hybrid-HT per-
forms very well at such high thresholds because it chooses
one of the one-sided tests. However, at the other end of the
spectrum, at very low similarity thresholds, the allowable
confidence interval width w becomes too small and a large
number of trials is required by the one-sided tests, mak-
ing them inefficient. SPRT performs reasonably well under
these situations. Under these conditions, the Hybrid-HT
strategy is able to perform better than both (SPRT and
One-Sided-CI-HT) as it able to smarty delegate pairs with
true similarity close to threshold to SPRT instead of one-

sided tests. In summary, the green lines (Hybrid-HT) can
perform well through the whole similarity threshold range.
For the WikiWords100K dataset in Figure 2(k) Hybrid-HT
gave 8.8x speedup over AllPairs and 2.1x speedup of SPRT
at 0.9 threshold and at 0.5 threshold, it gave 3.4x speedup
over AllPairs and 1.3x speedup over SPRT.

In terms of quality, our proposed method One-Sided-CI-
HT guarantee at least 97% recall (α = 0.03). In all re-
sults we see the recall of One-Sided-CI-HT, as expected, is
above 97%. In spite of the fact that SPRT does not have
strong guarantees in case of composite hypothesis, we see
that SPRT performs quite well in all datasets. Since Hybrid-
HT uses the One-Sided-CI-HT and SPRT, its quality num-
bers are also extremely good. Only BayesLSHLite, which
does not model the hash comparisons as a sequential pro-
cess, falls marginally below the 97% mark at some places.
In summary, our tests can provide rigorous quality guaran-
tees, while significantly improving the performance by over
traditional SPRT.

5.2.2 Algorithms using Early Pruning and Approxi-
mate Similarity Estimation

The previous section discussed the algorithms that can be
used when the explicit representation of the original data
is available. We now describe results on two algorithms for
which only the hash signatures needs to be stored rather
than the entire dataset. These algorithms use the LSH in-
dex generation followed by candidate pruning, followed by
approximate similarity estimation. We compare the follow-
ing two techniques:
BayesLSH: This uses the same pruning technique as Bayes-
LSHLite along with the concentration inference for similar-
ity estimation.
Hybrid-HT-Approx: This is our sequential variant. It
uses Hybrid-HT’s pruning technique along with the sequen-
tial fixed-width confidence interval generation strategy as
described in section 4.2. We set τ = 0.015.

We use the same parametric settings as before. The ad-
ditional parameters required here are the estimation error
bound δ and the coverage probability 1 − γ for the confi-
dence interval. We set δ = 0.05 and γ = α. Again we
measure performance by execution time. Here we measure
quality by both recall and estimation error as we provide
probabilistic guarantees on both.

Figure 3 reports both the performance and recall numbers.
We do not list the estimation error numbers as the avg. esti-
mation error for each algorithm on each dataset was within
the specified bound of 0.05. Results indicate that Hybrid-
HT-Approx is slower than BayesLSH as expected, however
is qualitatively better than BayesLSH. More importantly,
in all cases, Hybrid-HT-Approx has a recall value which is
well above the 97% guaranteed number. BayesLSH on an
average performs quite well, however it does fall below the
guaranteed recall value quite a few times. In summary, our
method provides rigorous guarantees of quality without los-
ing too much performance over BayesLSH.

6. CONCLUSIONS
In this paper we propose principled approaches of doing all

pairs similarity search on a database of objects with a given
similarity measure. We describe algorithms for handling two
different scenarios - i) the original data set is available and
the similarity of interest can be exactly computed from the



(a) Twitter, Jaccard (b) Twitter, Jaccard (c) WikiWords100K,Jaccard (d) WikiWords100K,Jaccard

(e) RCV,Jaccard (f) RCV,Jaccard (g) WikiLinks,Jaccard (h) WikiLinks,Jaccard

(i) Twitter,cosine (j) Twitter,cosine (k) WikiWords100K,cosine (l) WikiWords100K,cosine

(m) RCV,cosine (n) RCV,cosine (o) WikiLinks,cosine (p) WikiLinks,cosine

Figure 2: Comparisons of algorithms with exact similarity computation.

explicit representation of the data points and ii) instead of
the original dataset only a small sketch of the data is avail-
able and similarity needs to be approximately estimated.
For both scenarios we use LSH sketches (specific to the sim-
ilarity measure) of the data points. For the first case we
develop a fully principled approach of adaptively comparing
the hash sketches of a pair of points and do composite hy-
pothesis testing where the hypotheses are similarity greater
than or less than a threshold. Our key insight is a single test

does not perform well for all similarity values, hence we dy-
namically choose a test for a candidate pair, based on a crude
estimate of the similarity of the pair. For the second case
we additionally develop an adaptive algorithm for estimating
the approximate similarity between the pair. Our methods
are based on finding sequential fixed-width confidence in-
tervals. We compare our methods against state-of-the-art
allpairs similarity search algorithms – BayesLSH/Lite that
does not precisely model the adaptive nature of the prob-



(a) Twitter, Jaccard (b) Twitter, Jaccard (c) WikiWords100K,Jaccard (d) WikiWords100K,Jaccard

(e) RCV,Jaccard (f) RCV,Jaccard (g) WikiLinks,Jaccard (h) WikiLinks,Jaccard

(i) Orkut,Jaccard (j) Orkut,Jaccard (k) Twitter, cosine (l) Twitter, cosine

(m) WikiWords100K,cosine (n) WikiWords100K,cosine (o) RCV,cosine (p) RCV,cosine

Figure 3: Comparisons of algorithms with approximate similarity estimations.

lem. We also compare against the more traditional sequen-
tial hypothesis testing technique – SPRT. We conclude that
if quality guarantee is paramount, then we need to use our
sequential confidence interval based techniques, and if per-
formance is extremely important, then BayesLSH/Lite is the
obvious choice. Our Hybrid models give a very good trade-
off between the two extremes. We show that our hybrid
methods always guarantee the minimum-prescribed quality
requirement (as specified by the input parameters), while

being upto 2.1x faster than SPRT and 8.8x faster than All-
Pairs. Our hybrid methods also improve the recall by up
to 5% over BayesLSH/Lite, a contemporary state-of-the-art
adaptive LSH approach.
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