
A Pareto Framework for Data Analytics on
Heterogeneous Systems: Implications for Green

Energy Usage and Performance
Aniket Chakrabarti, Srinivasan Parthasarathy, and Christopher Stewart

The Ohio State University
chakrabarti.14@osu.edu,{srini,cstewart}@cse.ohio-state.edu

Abstract—Distributed algorithms for data analytics partition
their input data across many machines for parallel execution. At
scale, it is likely that some machines will perform worse than
others because they are slower, power constrained or dependent
on undesirable, dirty energy sources. It is challenging to balance
analytics workloads across heterogeneous machines because the
algorithms are sensitive to statistical skew in data partitions. A
skewed partition can slow down the whole workload or degrade
the quality of results. Sizing partitions in proportion to each
machine’s performance may introduce or further exacerbate
skew. In this paper, we propose a scheme that controls the
statistical distribution of each partition and sizes partitions
according to the heterogeneity of the computing environment.
We model heterogeneity as a multi-objective optimization, with
the objectives being functions for execution time and dirty energy
consumption. We use stratification to control skew. Experiments
show that our computational heterogeneity-aware (Het-Aware)
partitioning strategy speeds up running time by up to 51%
over the stratified partitioning scheme baseline. We also have a
heterogeneity and energy aware (Het-Energy-Aware) partitioning
scheme which is slower than the Het-Aware solution but can lower
the dirty energy footprint by up to 26%. For some analytic tasks,
there is also a significant qualitative benefit when using such
partitioning strategies.

Keywords-Large Scale Analytics Framework; Pareto Frontier;

I. INTRODUCTION

Distributed algorithms for data analytics partition their
input data across many machines. The de-facto approach
typically involves a simple scheme such as random or
round-robin. The size and content of each data partition can
significantly affect the performance and quality of analytics.
Size matters because some machines within a rack or data
center perform worse than others. Slow machines should
process small partitions. Typical solution in this space is a
work stealing [1] approach (whichever node finishes its share
of partitions, randomly selects a partition from another slower
node). However, traditional workstealing based solutions
will not scale for distributed analytics workloads as these
workloads are typically sensitive to the payload (content)
along with the size of data. Content matters because statistical
skew across partitions can slow down an analytics algorithm
and degrade the quality of its results.

Consider frequent pattern mining [2]. For large datasets, the
distributed algorithm simply divides the data into partitions
and runs frequent pattern mining locally on individual parti-

tions. Consequently, some of the locally frequent patterns are
not globally (considering entire data) frequent and hence an
additional scan of the generated candidate patterns is required
to prune those. Essentially the total number of candidate
patterns represents the search space – the more the number
of candidate patterns, the slower the run time. These false
positive candidate patterns arise due to the statistical skew
across data partitions.

An approach [3] for data partitioning in the homogeneous
context based on data stratification (grouping similar or related
datum into strata) and then leveraging this information for
data partitioning was proposed recently. However, a limitation
of this approach is that it does not account for the inherent
heterogeneity present in modern data centers. Most real-world
data centers are increasingly heterogeneous in terms of both
their computational capabilities as well as the available clean
energy they use. There are many reasons for such heterogeneity
such as equipment upgrades and power-performance tradeoffs
within modern processor families. We describe the types of
heterogeneity in section II.

In this work, we present a partitioning scheme for data
analytics on heterogeneous clusters. Our approach scans the
data before initiating the analytics workload and identifies
similar content. It then builds partitions that reflect the global
distribution of data and relative processing capacity of each
node. Our approach overcomes several challenges. First, we
significantly reduce resources needed to find similar content.
We use a lightweight data sketching approach that works
in one pass using only in-memory computation. Second, we
profile each machine’s processing capacity by using small,
samples to benchmark the target analytics workload. These
samples should be representative of the partitions on which
the actual algorithm will run. And then we learn the execution
time objective function using progressive sampling, where the
samples are representative of the partitions. We take samples
of increasing size and run the actual algorithm on them to
measure time. We then fit a function to predict execution
time given the input data size. The dirty energy consumed by
each partition depends on the execution time on each partition
and the amount of renewable energy available to the physical
server hosting that partition. To model the renewable energy
availability we use the PVWATTS simulator [4] from NREL.
Combining this with the aforementioned execution time func-

tion, we get our objective function for predicting the total dirty
energy consumed by a job. Our goal is to minimize the total
dirty energy consumption as well as minimize the maximum
running time across all partitions. Hence we frame a multi-
objective optimization problem, where the objective function
is essentially a weighted average of the objective function
with respect to execution time and the objective function with
respect to dirty energy consumption. The weighing parameter
controls the tradeoff between speed and energy consumption.
The solution to thatgives the partition size distribution. This
results in a well load balanced job execution.

Specifically, the contributions of this paper are as follows:
• We characterize the innate heterogeneity in today’s cloud
computing environments. We explain why special care is
needed while accounting heterogeneity in case of distributed
analytics algorithms. We show that to provide time and energy
aware solution, we need to model the hardware specifications
as well as the underlying data distribution.

• We provide a simple yet principled approach to model the
heterogeneity problem in the computing environment. We
describe a method to learn the objective function with respect
to the execution time by using progressive sampling technique.
This method is aware of both the machine capacities and
the content of data. We frame a multi-objective optimization
problem for time and energy, which can be solved efficiently
using linear programming technique.

• We build our partitioning framework as a middleware on top
of the popular NoSQL store Redis. We conduct a thorough
testing of our framework on three popular data mining work-
loads on five real-world data sets and found out that we get up
to 51% reduction in time while optimizing for time only and
we get up to 31% reduction in time and 14% reduction in dirty
energy consumption when we optimize them simultaneously.

II. MOTIVATION

Data centers are often heterogeneous in terms of the per-
formance of their constituent systems. This is inevitable since
nodes fail periodically and are often replaced with upgraded
hardware. Even when nodes have similar processing capacity,
the processing rate of individual virtual machines can still vary.
For example, cloud instances hosted on Amazon EC2 with the
same hardware specifications exhibit 2X variation in through-
put [5]. Another type of heterogeneity increasingly common
to data centers is the varying dirty energy footprint of different
physical servers. Some leading contemporary designs include:
1. [6] proposes to put the grid ties and renewable supplies
at rack level or individual server level rather than at the data
center level. This allows data centers to concentrate the green
energy as much as possible to the users requesting it.

2. iSwitch [7] envisions that in future data centers, different
racks will have different power sources, some might be fully
powered with green or dirty energy, while some racks might
be powered by both and jobs will be placed to minimize the
usage from purely grid tied racks (guarantees availability).

3. Another design gaining prominence [8] is the geo-
distributed data centers where jobs are scheduled to use servers
from different geographical regions to maximize the use of
green energy.

Additionally, a key challenge, for a large class of analytic
workloads running on such data centers, are their irregular
access patterns and their payload (input parameters, data skew)
dependency. Simply partitioning the data while accounting for
heterogeneity alone will lead to sub-optimal solutions. The rea-
son is, the time taken to process a partition of data is dependent
on the statistical distribution of data as well as the capabilities
of the node (processing speed, green energy harvesting).

Here we propose a novel framework that partitions data
in a payload-aware way such that the total execution time
is reduced while simultaneously accounting for the dirty
energy footprint of individual servers. Importantly we note
that optimizing for energy (at least the way we have described
it) is somewhat at odds to optimizing for performance – in
other words there is a Pareto-optimal tradeoff to be explored
here [9]. To reiterate, we note that for the problem we tackle
in this paper, optimizing for energy is not equivalent to
optimizing the “race to halt” (or performance) [10].

III. METHODOLOGY

The key elements of our methodology are: i) the specific
tasks (which in the context of big data applications are
irregular and data dependent in nature); ii) the heteroge-
neous processing capacity within the data-center-of-interest;
iii) the heterogeneous energy footprint within the data-center-
of-interest; and iv) the inherent data distribution of the pay-
load. Specifically, we seek to estimate task complexity, hetero-
geneous processing capability, clean energy availability within
the data center, and payload characterization, respectively. We
propose to estimate these quantities as follows. First, in an
effort to simplify the model we couple the first two elements
and seek to estimate the task complexity on a specific system
(set of individual machines) by operating on a small sample
problem. We note that this estimate will vary across different
data analytic tasks and across different datasets (a desirable
property), but is a one-time cost (small) and will be amortized
over multiple runs on the full dataset. Second, for clean energy
availability, we estimate green energy availability by relying
on a forecasting strategy. Finally, we leverage the idea of data
stratification for characterizing the payload distribution and to
facilitate a partitioning strategy that accounts for both energy
as well as processing heterogeneity.

Using the estimates derived (as above) our proposed so-
lution casts the partitioning problem as a multi-objective
optimization. The solution to this problem is then used to
automatically devise an appropriate partitioning strategy in the
presence of environment heterogeneity. The key components
of our partitioning framework (Figure 1) are: i) a task-specific
computational heterogeneity estimator; ii) available green en-
ergy estimator; iii) data stratifier (for payload characterization);
iv) a Pareto-optimal modeler and v) a data partitioner.

Fig. 1. The entire framework

A. Task-specific Heterogeneity Estimator (I)

As described earlier, in a heterogeneous environment, the
time taken by a machine for a specific task depends on
the available resources of that machine (speed, time-share,
and memory capacities), the underpinning complexity of the
task as well as the dataset characteristics (size, statistical
distribution of payload). In order to model the task specific
heterogeneity, we derive a utility function f for execution
time that accounts for task complexity and available machine
resources. Given a sample input payload, an algorithm and a
machine, this function can estimate the execution time of that
specific task on that payload in the given machine.

We learn the utility function for time f by adapting progres-
sive sampling [11] as follows. We take multiple samples of the
input data while increasing sample size from 0.05% up to 2%
of the data, and run the actual algorithm on these samples
and note the execution time for each run on each node in the
system. From these (sample size, execution time) pairs, we fit a
linear regression model for predicting runtime of the algorithm
on any input size. We discuss this choice in more detail in
section III-D. We learn a regression model specific to each
node in the cluster. This accounts for the difference in terms
of machine speed heterogeneity as we now have execution
time models for each machine. This is better than using the
stipulated machine CPU speed in three aspects:
1. The CPU speed does not always reflect the true processing
rate of an algorithm as there are other factors impacting the
speed of an algorithm such as amount of IO required, cache
miss pattern, memory access pattern and so on.

2. In virtualized environments, multiple virtual servers are co-
located on the same physical host. Two virtual servers with
exactly the same configurations could still exhibit different
processing rates. One possible reason could be that one of
the virtual servers is located on a physical machine which has
extremely high load at that instance of time. So the utility func-
tion f cannot be static, and it has to be learned dynamically.

3. The processing time also depends on the distribution of
the data for most data mining algorithms, and the CPU speed

cannot capture that aspect.
Our regression model evidently solves problems 1 and 2,
as we are running the actual algorithm on the samples, the
model learned takes into account the factors such as CPU to
IO ratio, cache and memory access patterns and so on. This
model can also solve the problem described in the 3rd point
(data distribution is also a factor in determining runtime) if we
can guarantee that the samples generated during progressive
sampling phase are representative of the final data partitions
on which the algorithm will run on. We can do this by the
stratification process which is described in section III-C.
The total execution time for a particular algorithm on node
i will be f(xi) = mixi + ci, where mi, ci are the learned
regression coefficients for node i and xi is the number of data
elements on node i.

B. Available Green Energy Estimator (II)

In order to account for the dirty energy footprint across indi-
vidual machines, we need to predict the amount of renewable
energy available to each machine. Hence we need a utility
function GE, which can predict the amount of renewable
energy available to a machine over a time interval. In future,
we expect such information will be provided by the data center
service provider in terms of carbon ratio guarantee or carbon
budget. In the current context, we can model the renewable
energy availability in a manner similar to Goiri et al. [12].
According to this model, available renewable energy at hour
t is GE(t) = p(w(t))B(t), where B(t) is renewable energy
available under ideal sunny conditions, w(t) is the cloud cover
and p(x) is attenuation factor. p(x) and B(t) are learned from
historical data and w(t) is available from any weather forecast
service. To compute availability over an interval, one can sum
the GE function over that interval.

Concretely, for the purposes of this work, we leverage
the PVWATTS simulator [4] to obtain energy traces for
different geographic locations at different points in time. The
simulator takes as input the specifications of the solar panel
and the location of the solar panel, and based on NREL’s
weather database and weather models, it outputs the renewable
energy production. Though the simulator provides per hour
average, one can rescale it to per second average for greater
precision. Again we will learn separate models for nodes
based on which geographical region the node is from. So
for dirty energy footprint of a node for hour t, we can use
g(xi) = Eif(xi) −

∑f(xi)
t=1 GEi(t), where Ei is the total

energy consumption rate of node i, xi is the number of data
elements in node i and GEi(t) is the predicted green energy
for the hour t for node i.

C. Data stratifier (III)

The job of the stratifier hence is to cluster the input data
(payload) into a set of strata where each stratum consists
of similar data elements. Such a stratification can then be
leveraged by our modeler, in conjunction with estimates on
computational heterogeneity and green energy availability, to
produce a Pareto-optimal partitioning strategy.

The challenge in the stratification step is to do so efficiently
in the presence of complex data elements of varying lengths
or dimensions (e.g. documents, transactions) while modeling
a range of data types from structured (trees, graphs) to
unstructured (text). For this purpose, we first sketch the input
data to low dimensional sets using a domain-specific hash
function. Then we use a clustering algorithm similar to the
Kmodes algorithm to create the strata as outlined previously
by Wang et al. [3].
1. Represent the high dimensional data as a set of items.
Currently, we support tree, graph and text data. For trees,
we first represent them using Prufer sequences [13]. We
then extract pivots from the Prufer sequences using the least
common ancestor relationship in the tree. For example, a pivot
(a, p, q) would mean node a is the least common ancestor of
nodes p and q. Each tree in the input data set is represented as
a set of pivots. For graph data sets, we use adjacency list as
the pivot set (set of neighbors). For text datasets, we represent
each document as a set of words in it. The important thing to
note is, at the end of this step, we have converted our input
data type to set data, so now operations can be done in a
domain independent way.

2. The aforementioned sets can still be very high dimensional
if the input data is high dimensional. The next step is hence
to project the high dimensional sets to a low dimensional
space (called sketches) and compute similarity in the low
dimensional space that can approximate the similarity of the
original sets. We use Jaccard coefficient as a measure of
similarity between sets. If x and y are the two sets, the
Jaccard similarity is given by: sim(x, y) = |x∩y|

|x∪y| We use
a locality sensitive hash function call min-wise independent
permutations [14] by Broder et. al. to generate the sketches
and compute approximate Jaccard similarity very efficiently
without much loss in accuracy. Let π be a random permutation
of the universal set in question, then the min-wise independent
permutation hash function on a data point x is as follows:
hπ(x) = min(π(x)) Since the cardinality of the universal set
can be extremely large, the above hash function can be very
expensive to compute, so we use an approximate algorithm
called the min-wise independent linear permutations [15] for
computing the hash functions. At the end of this step, we are
left with a sketch of the original input data, and the sketch is
of orders of magnitude smaller in size that the original input
data. As a result, subsequent operations such as stratification
can be done in a very efficient manner. This may be extended
to a wide class of similarity measures and the accuracy of the
sketch can be controlled by the sketch size [16], [17].

3. Once compact representation in a low dimensional space is
done for all the data points, the final step is to cluster on the
sketches to create the strata. We use the compositeKModes
clustering algorithm proposed by Wang et al. [3] to create the
clusters. The standard Kmodes algorithm has the following
problem. The cardinality of the universal set is very high
and since the small sketches contain very few items, chances

of every sketch getting matched to a cluster center is very
low. Consequently, a large number of data points cannot be
assigned to any of the clusters because the data points’ sketch
set has zero-match with the cluster center’s sketch set. To
overcome this, we use the compositeKModes algorithm, where
instead of a cluster center sketch being the mode of each
attribute in the feature space, the center sketch maintains L
highest frequency elements for each attribute (L > 1). In this
case, the probability of zero-match decreases significantly as
an attribute element in the data point has to match only one
of the L values for the same attribute in a center’s attribute
list. And this variant of Kmodes can also be shown to hold
the convergence guarantees of the original Kmodes algorithm.
Using sketch clustering, the input data can be successfully
stratified into clusters.

D. A Pareto-optimal Model (IV)

Now our goal is to simultaneously minimize the execution
time across all partitions, and minimize the sum of the dirty
energy consumed by all partitions. Formally, the problem we
wish to optimize can be succinctly described as:

minimize(v,

p∑
i=1

g(xi))

s.t. ∀i, v ≥ f(xi),∀i, xi ≥ 0, and

p∑
i=1

xi = N

In the aforementioned formulation v represents the maximum
running time across all partitions and

∑p
i=1 g(xi) is the total

dirty energy consumed by all partitions. Hence the above is a
multi-objective optimization problem, with the two objective
functions being v and

∑p
i=1 g(xi). We wish to find the Pareto

frontier [9] of solutions. A solution is a Pareto efficient or
optimal one [9] if none of the objectives can be improved
upon without degrading at least one. A Pareto frontier is a
set of all Pareto efficient solutions. More formally, in terms
of our formulation, let vxp and

∑p
i=1 g(xpi) be the values

of the objective functions at a solution vector ~xp. For this
solution to be a Pareto optimal one, it must satisfy following
condition: for any other solution vector xq, either vxq ≥ vxp
or

∑p
i=1 g(xqi) ≥

∑p
i=1 g(xpi).

We solve the multi-objective optimization problem using
a technique called scalarization [18]. Here a single objective
function is formed by taking the weighted mean of the multiple
objectives. Then any single objective optimization technique
can be applied. It can be proved that the solution vector we
get by the scalarization technique is a Pareto optimal one [18].
By applying scalarization our problem formulation becomes,

minimize(αv + (1− α)

p∑
i=1

g(xi))

s.t. 0 ≤ α ≤ 1,∀i, v ≥ f(xi),∀i, xi ≥ 0, and

p∑
i=1

xi = N

α is the weight factor which controls the tradeoff between the
objectives execution time and dirty energy consumption. If

we approximate the value of function GEi to be the mean
renewable energy availability rate over a certain period of
time that includes the job execution time, then the above
formulation becomes a linear programming problem. If the
mean renewable energy availability rate is ḠE, then for
each node i, the factor Eif(xi) −

∑f(xi)
t=1 GEi(t) becomes,

Eif(xi) − ¯GEif(xi) = kif(xi), where ki is a node specific
constant. Then our formulation can be further simplified to:

αv + (1− α)

p∑
i=1

g(xi) = αv + (1− α)

p∑
i=1

kifi(xi)

= αv + (1− α)

p∑
i=1

ki(mixi + ci)

The described formulation is a linear programming problem
and hence can be efficiently solved. The solution to this
linear programming problem always results in a Pareto-optimal
solution, i.e. a change in the solution vector will degrade at
least one of the objective functions. Specifically, optimality is
guaranteed when the execution time is approximately linearly
related to the data size and the fluctuations in the renewable en-
ergy availability are minimal so that the availability is close to
the mean energy supply. Empirically, even when these condi-
tions are not satisfied, this model will perform better than par-
titioning naively with equal sized partitions as we shall shortly
demonstrate. Though in that case, a better solution will exist.

Another option we considered and empirically evaluated, is
to fit a more general functional form to the utility functions,
such as higher order polynomials for the regression model.
Theoretically, this makes sense as any arbitrary function can be
approximated by polynomials using the Taylor approximation.
But practically it is not a feasible option as such models
will take a very high number of samples to fit the curve
properly. Too few points will invariably over fit the points
to the model. And we cannot afford too many samples in
our progressive sampling step as collecting a sample implies
running the actual algorithm on a small sample of the data.
Under these circumstances the linear regression model was
found to be quite effective on all configurations we evaluated
and is moreover easily trained with very few samples and the
resulting formulation leads to a linear programming problem,
that can be efficiently solved.

Usually, for a multi-objective optimization, there is a set
of Pareto optimal solutions. This set is known as the Pareto
frontier. Our formulation, which is a weighted mean of the
individual objectives, generates only one point on the Pareto
frontier. The user-defined parameter α controls which point
we get in the Pareto frontier. Hence, setting α to a high value
will imply a partitioning scheme where time will be improved
more than energy and setting α to a lower value will optimize
the energy function better. In fact, our Het-Aware scheme is a
special case where α is set to 1.0. The system then will only
optimize for time. Note that selecting α can be challenging as
the scale of the two objective functions (time and energy) are

different. The energy function has a much higher scale than
the time function. This implies, to focus more on optimizing
time than energy, we have to set a very high value of α (α
is the coefficient of the time function). We believe in future
this problem can be avoided by normalizing both the objective
functions to 0-1 scale, and then both functions will be equally
sensitive to changes in α.

E. Data Partitioner (V)

The final component of our framework is the data par-
titioner. This component is responsible for putting the final
data partitions into the machines based on the output of the
modeling step. Currently, we support the final partitions to
be data partitions stored on disk or data partitions stored
on Redis NoSQL store. In future, we plan to use a NoSQL
store manager to manage performance and fault tolerance [19].
After the optimization step is done, the framework already
knows how many data items to put in each partition. Our
data partitioner supports two types of partitions. Both of the
schemes are driven by the stratification process.

• Making each partition representative of payload: The goal
here is to make each partition a representative of the entire
data. Such a representative partitioning can be achieved by
making each partition a stratified sample without replacement
of the data. Cochran [20] showed that a stratified sample
approximates the underlying true data distribution much better
than a simple random sample. As a result, our partitions
will be good representatives of the global data, especially if
the data has a large number of strata and each partition is
relatively small with respect to the total input data. Since our
stratification step already creates the strata, we can proportion-
ally allocate elements to each stratum to create the required
partitions.

• Placing similar elements together: The goal here is to group
similar types of data items together. Again we can achieve
such a partitioning scheme by using the strata created by our
stratification process. Ideally, we would like to make individual
stratum a partition by itself. This would ensure minimum
entropy for all partitions. But we have to take to into account
the constraint set by the optimizer, it has already decided what
the partition sizes are, to optimally load balance. And usually,
the number of strata are much higher than the number of
partitions. In order to do the partitioning, in this case, we
first order the elements one according to the strata id, i.e. all
elements of strata 1 followed by elements of strata 2 and so
on. Once this ordering is created, we create the partitions by
taking chunks of respective partition sizes from this ordered
data.

Note that, samples of both kinds of partitions can be
generated by the stratifier as only the data clusters are required.
Those are the samples which the stratifier feeds to the het-
erogeneity estimator so that in the progressive sampling step,
the samples are representative of the final partition payload.
This makes the heterogeneity estimator aware of the payload
characteristics.

IV. IMPLEMENTATION

Our data partitioning framework is implemented in C and
C++. We use the C library API of Redis NoQSL store as our
underlying storage medium. Note that we do not use the cluster
mode of Redis as in that mode we do not have control over
which key goes to which partition and our whole idea relies
on the fact that we will be able to place data items according
to our stratification and optimization rules. Hence, we run
one instance of Redis server in each of our cluster nodes,
and manually manage communication from the framework
middleware level. We need a global barrier module for our
framework as the pivot extraction, sketch generation, sketch
clustering and final data partitioning have to be separated by
barriers. We used the atomic fetch-and-increment command
provided by Redis to create a global barrier routine. Since there
could be millions of data items, each of which can be a high
dimensional set, storing them could imply millions of get/put
requests in Redis and many of those requests could be to
remote machines. This can evidently cause a huge performance
hit. We use a storage data structure which can avoid this
excessive get/put requests on Redis. Instead of storing the
individual attribute values of a data item, we store the item
as a sequence of raw bytes and we maintain a list of such
sequences for a list of data items. The first four bytes in the
sequence contain the length of the data object. Note we use the
Redis list structure here. This gives us the freedom to access
the entire data set of a partition in a single get/put operation,
and the access to individual data items from a get/put request
as well. To further improve batching of requests we use the
pipelining feature of Redis, where requests are batched up to
the preset pipeline width and then sent out. In Redis, this is
known to substantially improve the response times.

There are three tasks in our framework which are done in a
centralized fashion - the global barrier routine, the clustering
and creation of the representative data sample which every
node will run on to get runtime and energy consumption
estimates. Note that we chose to do the clustering in a
centralized manner as the compositeKmodes algorithm is run
on the sketches rather than the actual data. The size of the
sketches of a dataset is of orders of magnitude smaller than the
raw data size, which is why it is easy to fit in a single machine.
As a result, the clustering can run with zero communication
overhead. We saw that doing the clustering in distributed
fashion over the sketches is prohibitive in terms of runtime.
Even though the two tasks have to be managed by a master
node, they need not be the same node. In other words, we
choose two separate nodes in the cluster for the two tasks.
This gives us some level of decentralization and better load
balancing. We also choose type 1 nodes (fastest) as the master
nodes if available. If not, then we select type 2, type 3 or type
4 in that order of priority.

V. EXPERIMENTAL EVALUATION

In this section, we seek to examine the efficacy of the
proposed Pareto framework for analytic workloads on het-
erogeneous systems. Our workloads are drawn from those

commonly used in the search, news and social media industry
and include both the analysis of structured (e.g. graph) and
unstructured (e.g. text) data. Specifically, we use two types of
distributed workloads: (i) frequent pattern mining - a compute-
intensive workload, where even if the input data size is small,
the intermediate data can be huge and (ii) compression - a
data-intensive workload that usually runs on huge quantities
of data. We seek to answer the following questions:

• Is there a tangible benefit to heterogeneity-aware partitioning
for such workloads? For both unstructured and structured data
workloads?

• How effective is the Pareto-optimal model? Does using dif-
ferent values of α result in interesting differentials in runtime
and dirty energy usage?

A. Setup

We use a cluster of machines to run our experiments.
The individual nodes consists of 12 cores with Intel Xeon
2.2GHz frequency. Each machine has a RAM of 48GB. Since
the experiments we run are cluster heterogeneity-aware, and
the machines in this cluster are homogeneous, we need to
introduce heterogeneity both in terms of speed and renewable
energy availability. We introduce heterogeneity in the follow-
ing way:
1. We use 4 different types of machine speeds in our ex-
periments. The idea is to use machines with relative speeds
x, 2x, 3x and 4x. The way we do it is by introducing busy
loops in the homogeneous cluster. Since there are 12 cores
per machine, type 1 nodes have no busy loops, type 2 nodes
will have 12 busy loops, type 3 nodes will have 24 busy loops
and type 4 nodes will have 36 busy loops running in parallel.

2. We use the NREL simulator [4] to simulate renewable
energy heterogeneity. Again we introduce 4 types of nodes.
We select 4 of Google’s data center locations and create
renewable energy traces for those locations from the weather
database and models of the PVWATTS simulator. We found
out the server power consumption of each machine from HP
SL server specifications (1200 WATTS 12 cores). We used
the individual processor power consumption value from Intel
Xeon (95 Watts), which implies base operating power is
(1200 - 95*12) = 60 Watts. We then generated the 4 types
of machines by running 0, 12, 24, 36 busy while loops in
the 4 machines as described above. And we assumed that
the fastest machine has 4 cores, 2nd fastest 3 cores, then 2
cores and the slowest one with 1 core. Therefore, the power
consumption of the 4 types of machines is 60 + 4 ∗ 95 = 440
Watts, 60 + 3 ∗ 95 = 345 Watts, 60 + 2 ∗ 95 = 250 Watts and
60 + 1 ∗ 95 = 155 Watts respectively.

B. Datasets

We use 5 real-world datasets from 3 different domains
namely - graphs, trees and text datasets. Our datasets vary
from 50,000 trees set to 15 million nodes graph and since
they are collected from different domains, the underlying
data distributions and characteristics will largely vary. Table I

Dataset Type Size
SwissProt Tree # of trees - 59545, Nodes - 2977031
Treebank Tree # of trees - 56479, Nodes - 2437666

UK Graph Nodes - 11081977, Edges - 287005814
Arabic Graph Nodes - 15957985, Edges - 633195804
RCV1 Text # of docs - 804414, vocab size - 47236

TABLE I. DATASETS

contains the description of the datasets. The datasets are
collected from [21], [22], [23].

C. Applications and Results

1) Frequent Pattern Mining: Frequent pattern mining has
been one of the most common data mining applications. The
goal of the frequent pattern mining problem is to find the
frequent co-occurring items in the entire data set. The co-
occurring items have to be present in at least a certain percent-
age (called support) of the entire dataset. There has been a lot
of research in developing fast algorithms for frequent pattern
mining on text or transactional data [2], [24], trees [25] and
graphs [26]. Since the number of candidate patterns to check
against a support can at worst be exponential, frequent pattern
mining algorithms can be really slow. Consequently distributed
versions of these algorithms are of utmost importance. We
use the partition-based distributed frequent pattern mining
algorithm proposed by Savasere et. al. [27]. The algorithm
works by first finding the locally frequent patterns in each
partition and then a global scan is required to prune out the
false positive patterns. If each partition has a similar number of
candidate patterns to evaluate, then depending on the system
heterogeneity, faster machines will finish processing faster,
however, the overall execution time will be bottlenecked by the
slow running partitions. Similar is the case with energy hetero-
geneity. The partitioning scheme should try to schedule more
computation to the machines which have a higher availability
of renewable energy. Additionally, a naive partitioning scheme
may result in substantial skew in the number of candidate
patterns to process in each partition. The execution time for
the entire job will increase even if a single partition generates
too many patterns. Hence to provide a fully heterogeneity-
aware partitioning, the partitions should be homogeneous in
terms of the payload characteristics as well. We achieve this
by our stratified partitioning strategy which tries to make each
partition a representative of the payload.

We evaluate performance in terms of execution time and
total dirty energy consumed across all machines. We report
results under three different partitioning strategies - 1) Strati-
fied partitioning, 2) Het-Aware (α = 1.0) stratified partitioning
and 3) Het-Energy-Aware stratified partitioning. A simple
random partitioning strategy performs much worse than our
baseline (stratified strategy) [28], [3]. For the Het-Energy-
Aware scheme, we set the parameter α to 0.999. We will
show that by controlling α, we are able to find a solution
that simultaneously beats the execution time and the dirty
energy footprint of the baseline strategies which create payload
partitions of equal sizes. α needs to be set to high values (close
to 1.0) to find decent tradeoffs between time and energy as the

(a) Swiss (b) Swiss

(c) Treebank (d) Treebank

Fig. 2. Frequent Tree Mining on Swiss Protein and Treebank Dataset

two objective functions have different scales. In future, we plan
to normalize both objectives to 0-1 range. We ran 2 variants
of the frequent pattern mining algorithms:
Frequent Tree Mining: We ran the frequent tree mining
algorithm [25] on our 2 tree datasets. Figure 2 reports the
execution time and dirty energy consumption on the Swiss
protein dataset and the Treebank dataset. Results indicate that
using our Het-Aware strategy can improve the runtime by 43%
for the 8-partition configuration for Treebank (Figure 2(c)),
and this is the best strategy when only execution time is of
concern. However, Figures 2(d) and 2(b), that have the energy
consumption numbers of these strategies, show that Het-Aware
solution is not the most efficient one in terms of dirty energy
consumption. Here the Het-Energy-Aware scheme performs
the best. In the same 8-partition configuration as described
before, the Het-Energy-Aware strategy reduces the execution
time by 36% while simultaneously reducing the dirty energy
consumption by 9%.

Text Mining: We run the Apriori [2] frequent pattern mining
algorithm on the RCV corpus. The execution time numbers are
reported in Figure 3(a). Again the Het-Aware scheme is the
best with improvement up to 37% reduction in execution time
over the stratified partitioning strategy with 8 partitions. The
energy numbers are provided in Figure 3(b). The Het-Energy-
Aware scheme for the 16-partition configuration reduced the as
expected reduced the runtime by 31% while consuming 14%
less energy than the stratified partitioning scheme.

2) Graph compression: We test our partitioning scheme on
distributed graph compression algorithms. The idea is that we
split the input data into p partitions. And then we compress
the data in individual partitions independently. We use two

(a) Execution Time (b) Dirty Energy

Fig. 3. Frequent Text Mining on RCV1 corpus

compression algorithms LZ77 [29] and webgraph [30] to
compress the data of individual partitions.

Here we benefit from the partitioning strategy which tries
to group similar elements together in a single partition. If a
partition comprises of elements which are very similar, then
a partition can be represented by a small number of bits. By
creating such low entropy partitions, one can get very high
compression ratio.

We evaluate performance by the execution time. Again
we compare three strategies, stratified partitioning with no
heterogeneity awareness, Het-Aware stratified partitioning and
Het-Energy-Aware stratified partitioning. Here we set the
parameter α to be 0.995 instead of 0.999 as was the case in the
frequent pattern mining experiments. Due to reasons explained
in Section III-D the execution time should deteriorate quite a
bit and should be close to the baselines, while dirty energy
consumption rate should improve significantly.

Figure 4 reports the performance numbers (execution time
and dirty energy consumption) as well the quality (compres-
sion ratio) on both the UK dataset and the Arabic dataset. Our
Het-Aware strategy improves the execution time by 51% on the
Arabic dataset for the 8-partition configuration (Figure 4(c)).
Our Het-Energy-Aware scheme reduces the execution time
by only 9%, but simultaneously it reduces the dirty energy
consumption by 26% on the same configuration as described
above. This also shows the impact of setting a lower α than
the frequent pattern mining experiments. The execution time
improvements have gone down and dirty energy consumption
rate has improved substantially.

We evaluate the quality of our partitioning schemes by com-
paring the compression ratios achieved by each scheme. Our
heterogeneity-aware stratified schemes match the compression
ratio of the baseline stratified scheme. Hence we are able to
vary the partition sizes to account for better load balancing
without any degradation of quality. The technique of reorder-
ing the data points according to clusters and creating chunks
of variable sizes is able to generate low entropy partitions.

We also run experiments with the very common LZ77 com-
pression algorithm. Tables II and III report the performance
and quality numbers for the UK and the Arabic datasets
respectively for the 8-partition setting. Lz77 is extremely fast,
so there are no gains from our heterogeneity-aware schemes.

(a) UK (b) UK

(c) Arabic (d) Arabic

(e) UK (f) Arabic

Fig. 4. Graph compression results on UK and Arabic webgraphs

Strategy Time (seconds) Compression ratio
Stratified 18 18.33

Het-Aware 11 18.2
Het-Energy-Aware 12 18.01

TABLE II. LZ77 COMPRESSION ON UK GRAPH WITH 8 PARTITIONS

The compressibility of our heterogeneity aware techniques is
comparable to that of the stratified strategy.
D. Understanding the Pareto-Frontier:

Here we study the effect parameter α has on time-energy
tradeoff curve (Pareto-frontier) for all three workloads we
consider. For all workloads (Figure 5) we vary the value of α
from 1 to 0 and study the impact on execution time and dirty

Strategy Time (seconds) Compression ratio
Stratified 38 18.3

Het-Aware 35 18.26
Het-Energy-Aware 40 18.14

TABLE III. LZ77 COMPRESSION ON ARABIC GRAPH WITH 8 PARTITIONS

energy consumption (for 8 partitions). There are two major
trends one observes.

First, it is clear that by changing the value of α focus can be
effectively shifted from execution time minimization to dirty
energy minimization. The magenta line shows this shift. At
α = 1.0 (extreme left point) execution time is minimum, while
dirty energy consumption is maximum for all workloads. This
point also represents the Heterogeneity-aware scheme reported
earlier. As α is reduced the runtime increases but the dirty
energy consumed is reduced. We note that at an α value of
about 0.9 dirty energy is typically minimized but at this point
the execution time is fairly high. The rationale is that most of
the load is placed on the node that harnesses the most green
energy leading to severe load imbalance. In other words, at
this point the optimizer puts almost all of the payload in the
machine with lowest dirty energy footprint. Further lowering
α does not have any additional impact.

Second, we observe that the baseline strategy of stratified
partitioning is significantly above and to the right of the
magenta line (yellow points). Therefore, a simple stratified
strategy results in sub-optimal a solution (not Pareto-efficient).

Third, in Figure 6 we evaluated whether our methodology is
able to generalize to different parametric settings on the same
dataset. We changed the support threshold (a key parameter)
for both tree and text datasets and plotted the Pareto frontiers
by varying α as described before. For both the datasets, we
clearly see that our method is able to find the Pareto frontiers
nicely. Hence our framework can tradeoff of between perfor-
mance and dirty energy across different parametric settings
of the same workload. This is particularly important in the
context of frequent pattern mining as support is an intrinsic
property of the dataset – to find interesting patterns in different
datasets, the support has to be adjusted accordingly.

To summarize it is clear that accounting for payload-
distribution can result in significant performance and energy
gains. Coupled with heterogeneity- and green-aware estimates
these gains can be magnified.

VI. RELATED WORKS

Data partitioning and placement is a key component in
distributed analytics. Capturing of representative samples us-
ing the stratified sampling technique on large scale social
networks using MapReduce has been investigated by Levin
et. al. [31]. Meng [32] developed a general framework for
generating stratified samples from extremely large scale data
(need not be social network) using MapReduce. Both of these
techniques are effective for creating a single representative
sample, however, our goal in this work is to partition the
data such that each partition is statistically alike. Duong et.
al. [28] develops a sharding (partitioning) technique for social
networks that performs better than random partitioning. This
technique utilizes information specific to social networks to
develop effective partitioning strategies. In contrast, our goal
is to develop a general framework for data partitioning in
the context of distributed analytics. Another related work by
Wang et. al. [3] provides a method to mitigate data skew

across partitions in the homogeneous context. In this work,
we propose to design a framework for heterogeneous context
where the heterogeneity is in terms of processing capacity and
green energy availability across machines. Performance-aware
and energy-aware frameworks are studied extensively in the
context of cloud and database workloads [33], [34], [35], [36],
[37], [38]. However, these techniques are not payload aware
which is extremely critical for large scale analytics workloads.
Along with performance and energy skew, data skew also plays
a significant role in the performance of analytics tasks.

VII. CONCLUDING REMARKS

The key insight we present is that both the quality and
performance (execution time and dirty energy footprint) of dis-
tributed analytics algorithms can be affected by the underlying
distribution of the data (payload). Furthermore, optimizing for
either execution time or minimizing dirty energy consumption
leads to a Pareto-optimal tradeoff in modern heterogeneous
data centers. We propose a heterogeneity-aware partitioning
framework that is conscious of the data distribution through a
lightweight stratification step. Our partitioning scheme lever-
ages an optimizer to decide what data items to put it which par-
tition so as to preserve the data characteristics of each partition
while accounting for the inherent heterogeneity in computation
and dirty energy consumption. Our framework also allows
data center administrators and developers to consider multiple
Pareto-optimal solutions by examining only those strategies
that lie on the Pareto-frontier. We run our placement algorithm
on three different data mining workloads from domains related
to trees, graphs and text and show that the performance can be
improved up to 31% while simultaneously reducing the dirty
energy footprint by 14% over a highly competitive strawman
that also leverages stratification.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful
feedbacks. This work is supported in part by NSF grants IIS-
1550302, CCF-1629548, CNS-1350941, CSR-1320071 and
CNS-1513120.

REFERENCES

[1] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded compu-
tations by work stealing,” Journal of the ACM (JACM), vol. 46, no. 5,
pp. 720–748, 1999.

[2] R. Agrawal, R. Srikant et al., “Fast algorithms for mining association
rules,” in Proc. 20th int. conf. very large data bases, VLDB, vol. 1215,
1994, pp. 487–499.

[3] Y. Wang, S. Parthasarathy, and P. Sadayappan, “Stratification driven
placement of complex data: A framework for distributed data analytics,”
in Data Engineering (ICDE), 2013 IEEE 29th International Conference
on. IEEE, 2013, pp. 709–720.

[4] “Pvwatts simulator,” http://pvwatts.nrel.gov/.
[5] A. Beloglazov, R. Buyya, Y. C. Lee, A. Zomaya et al., “A taxonomy and

survey of energy-efficient data centers and cloud computing systems,”
Advances in Computers, vol. 82, no. 2, pp. 47–111, 2011.

[6] N. Deng, C. Stewart, and J. Li, “Concentrating renewable energy in
grid-tied datacenters,” in Sustainable Systems and Technology (ISSST),
2011 IEEE International Symposium on. IEEE, 2011, pp. 1–6.

[7] C. Li, A. Qouneh, and T. Li, “iswitch: coordinating and optimizing
renewable energy powered server clusters,” in Computer Architecture
(ISCA), 2012 39th Annual International Symposium on. IEEE, 2012,
pp. 512–523.

(a) Swiss dataset (b) RCV dataset (c) UK dataset

Fig. 5. Pareto frontiers on on a) Tree, b)Text, and c) Graph workloads (8 partitions). Magenta arrowheads represent Pareto-frontier (computed by varying
α). Note that both baselines: Stratified (yellow inverted arrowhead); lie above the Pareto frontier (not Pareto-efficient) for all workloads.

(a) Swiss dataset (b) RCV dataset

Fig. 6. Pareto frontiers on a) Tree and b)Text (8 partitions) by changing the
support thresholds.

[8] Y. Zhang, Y. Wang, and X. Wang, “Greenware: Greening cloud-scale
data centers to maximize the use of renewable energy,” in Middleware
2011. Springer, 2011, pp. 143–164.

[9] D. Fudenberg and J. Tirole, Game Theory. Cambridge, MA: MIT Press,
1991.

[10] J. Choi, D. Bedard, R. J. Fowler, and R. W. Vuduc, “A roofline model
of energy,” in 27th IEEE International Symposium on Parallel and
Distributed Processing, IPDPS 2013, Cambridge, MA, USA, May 20-24,
2013, 2013, pp. 661–672.

[11] S. Parthasarathy, “Efficient progressive sampling for association rules,”
in Proceedings of the 2002 IEEE International Conference on Data
Mining (ICDM 2002), 9-12 December 2002, Maebashi City, Japan,
2002, pp. 354–361.

[12] Í. Goiri, R. Beauchea, K. Le, T. D. Nguyen, M. E. Haque, J. Guitart,
J. Torres, and R. Bianchini, “Greenslot: scheduling energy consumption
in green datacenters,” in Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis.
ACM, 2011, p. 20.

[13] H. Prüfer, “Neuer beweis eines satzes über permutationen,” Arch. Math.
Phys, vol. 27, pp. 742–744, 1918.

[14] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher, “Min-
wise independent permutations,” in Proceedings of the thirtieth annual
ACM symposium on Theory of computing. ACM, 1998, pp. 327–336.

[15] T. Bohman, C. Cooper, and A. Frieze, “Min-wise independent linear
permutations,” Electronic Journal of Combinatorics, vol. 7, p. R26,
2000.

[16] A. Chakrabarti and S. Parthasarathy, “Sequential hypothesis tests for
adaptive locality sensitive hashing,” in Proceedings of the 24th Interna-
tional Conference on World Wide Web. ACM, 2015, pp. 162–172.

[17] A. Chakrabarti, B. Bandyopadhyay, and S. Parthasarathy, “Improving
locality sensitive hashing based similarity search and estimation for
kernels,” in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer International Publishing,
2016, pp. 641–656.

[18] C.-L. Hwang, A. S. M. Masud, S. R. Paidy, and K. P. Yoon, Multiple
objective decision making, methods and applications: a state-of-the-art
survey. Springer Berlin, 1979, vol. 164.

[19] C. Stewart, A. Chakrabarti, and R. Griffith, “Zoolander: Efficiently
meeting very strict, low-latency slos.” in ICAC, vol. 13, 2013, pp. 265–
277.

[20] W. G. Cochran, “Sampling techniques. 1977,” New York: John Wiley
and Sons.

[21] “Uw xml repository,” http://www.cs.washington.edu/research/xmldatasets/.
[22] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “Rcv1: A new benchmark

collection for text categorization research,” The Journal of Machine
Learning Research, vol. 5, pp. 361–397, 2004.

[23] “Law lab datasets,” http://law.di.unimi.it/datasets.php/.
[24] M. J. Zaki, S. Parthasarathy, M. Ogihara, W. Li et al., “New algorithms

for fast discovery of association rules.” in KDD, vol. 97, 1997, pp. 283–
286.

[25] S. Tatikonda and S. Parthasarathy, “Hashing tree-structured data: Meth-
ods and applications,” in Data Engineering (ICDE), 2010 IEEE 26th
International Conference on. IEEE, 2010, pp. 429–440.

[26] X. Yan and J. Han, “Closegraph: mining closed frequent graph patterns,”
in Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2003, pp. 286–295.

[27] A. Savasere, E. R. Omiecinski, and S. B. Navathe, “An efficient
algorithm for mining association rules in large databases,” 1995.

[28] Q. Duong, S. Goel, J. Hofman, and S. Vassilvitskii, “Sharding social
networks,” in Proceedings of the sixth ACM international conference on
Web search and data mining. ACM, 2013, pp. 223–232.

[29] J. Ziv and A. Lempel, “Compression of individual sequences via
variable-rate coding,” Information Theory, IEEE Transactions on,
vol. 24, no. 5, pp. 530–536, 1978.

[30] P. Boldi and S. Vigna, “The webgraph framework i: compression
techniques,” in Proceedings of the 13th international conference on
World Wide Web. ACM, 2004, pp. 595–602.

[31] R. Levin and Y. Kanza, “Stratified-sampling over social networks using
mapreduce,” in Proceedings of the 2014 ACM SIGMOD international
conference on Management of data. ACM, 2014, pp. 863–874.

[32] X. Meng, “Scalable simple random sampling and stratified sampling.”
in ICML (3), 2013, pp. 531–539.

[33] D. Cheng, C. Jiang, and X. Zhou, “Heterogeneity-aware workload place-
ment and migration in distributed sustainable datacenters,” in Parallel
and Distributed Processing Symposium, 2014 IEEE 28th International.
IEEE, 2014, pp. 307–316.

[34] A. Pavlo, C. Curino, and S. Zdonik, “Skew-aware automatic database
partitioning in shared-nothing, parallel oltp systems,” in Proceedings of
the 2012 ACM SIGMOD International Conference on Management of
Data. ACM, 2012, pp. 61–72.

[35] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “Skewtune: mitigating
skew in mapreduce applications,” in Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data. ACM,
2012, pp. 25–36.

[36] L. Wang, G. Von Laszewski, J. Dayal, and F. Wang, “Towards energy
aware scheduling for precedence constrained parallel tasks in a cluster
with dvfs,” in Cluster, Cloud and Grid Computing (CCGrid), 2010 10th
IEEE/ACM International Conference on. IEEE, 2010, pp. 368–377.

[37] E. Rahm and R. Marek, “Analysis of dynamic load balancing strategies
for parallel shared nothing database systems.” in VLDB. Citeseer, 1993,
pp. 182–193.

[38] Z. Xu, N. Deng, C. Stewart, and X. Wang, “Cadre: Carbon-aware data
replication for geo-diverse services,” in Autonomic Computing (ICAC),
2015 IEEE International Conference on. IEEE, 2015, pp. 177–186.

