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Abstract. We present a novel data embedding that significantly reduces
the estimation error of locality sensitive hashing (LSH) technique when
used in reproducing kernel Hilbert space (RKHS). Efficient and accu-
rate kernel approximation techniques either involve the kernel principal
component analysis (KPCA) approach or the Nyström approximation
method. In this work we show that extant LSH methods in this space
suffer from a bias problem, that moreover is difficult to estimate apri-
ori. Consequently, the LSH estimate of a kernel is different from that
of the KPCA/Nyström approximation. We provide theoretical rationale
for this bias, which is also confirmed empirically. We propose an LSH
algorithm that can reduce this bias and consequently our approach can
match the KPCA or the Nyström methods’ estimation accuracy while
retaining the traditional benefits of LSH. We evaluate our algorithm on
a wide range of realworld image datasets (for which kernels are known to
perform well) and show the efficacy of our algorithm using a variety of
principled evaluations including mean estimation error, KL divergence
and the Kolmogorov-Smirnov test.

Keywords: Locality Sensitive Hashing, Kernel Similarity Measure, Sim-
ilarity Estimation, Nyström Method

1 Introduction

In recent past, Locality Sensitive Hashing (LSH) [1] has gained widespread im-
portance in the area of large scale machine learning. Given a high dimensional
dataset and a distance/similarity metric, LSH can create a small sketch (low
dimensional embedding) of the data points such that the distance/similarity is
preserved. LSH is known to provide approximate and efficient solution for es-
timating the pairwise similarity among data points, which is critical in solving
applications for many domains ranging from image retrieval to text analytics
and from protein sequence clustering to pharmacogenomics. Recently kernel-
based similarity measures [22] have found increased use in such scenarios in part
because the data becomes easily separable in the kernel induced feature space.
The challenges of working with kernels are two fold – (1) explicit embedding
of data points in the kernel induced feature space (RKHS) may be unknown
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or infinite dimensional and (2) generally the kernel function is computationally
expensive. The first problem prohibits building of a smart index structure such
as kdtrees [3] that can allow efficient querying, while the second problem makes
constructing the full kernel matrix infeasible.

LSH has been used in the context of kernels to address both of the aforemen-
tioned problems. Existing LSH methods for kernels [13, 12] leverage the KPCA
or Nyström techniques to estimate the kernel. The two methods differ only in
the form of covariance operator that they use in the eigenvector computation
step to approximately embed the data in RKHS. While KPCA uses the centered
covariance operator, Nyström method uses the uncentered one (second moment
operator). Without loss of generality, for the rest of the paper, we will use the
Nyström method and hence by covariance operator we will mean the uncentered
one. The LSH estimates for kernel differ significantly from the Nyström approx-
imation. This is due to the fact that the projection onto the subspace (spanned
by the eigenvectors of covariance operator) results in reduction of norms of the
data points. This reduction depends on the eigenvalue decay rate of the covari-
ance operator. Therefore, this norm reduction is difficult to estimate apriori.
Assume that the original kernel was normalized with norm of the data points
(self inner product) equaling 1. As a consequence of this norm reduction, in the
resulting subspace the Nyström approximated kernel is not normalized (self in-
ner product less than 1). Now, it is shown in [6] that LSH can only estimate
normalized kernels. Thus in the current setting, instead of the Nyström approx-
imated kernel, it estimates the re-normalized version of it. The bias arising out
of this re-normalization depends on the eigenvalue decay rate of the covariance
operator, and is unknown to the user apriori. This is particularly problematic,
since for the LSH applications (index building and estimation) in the context
of similarity (not distance), accurate estimation is paramount. For instance, the
All Pairs Similarity Search (APSS) [2, 5, 4] problem finds all pairs of data points
whose similarity is above a user defined threshold. Therefore, APSS quality will
degrade in case of high estimation error. In APSS using LSH [5], it is clearly no-
ticeable that the quality for non-kernel similarity measures is better than their
kernel counterparts.

We propose a novel embedding of data points that is amenable to LSH sketch
generation, while still estimating the Nyström approximated kernel matrix in-
stead of the re-normalized version (which is the shortcoming of existing work).
Specifically the contributions of this paper are as follows:

1. We show that Nyström embedding based LSH generates the LSH embedding
for a slightly different kernel rather than the Nyström approximated one.
This bias becomes particularly important during the LSH index construction
where similarity threshold (or distance radius) is a mandatory parameter.
Since this radius parameter is given in terms of the original similarity (ker-
nel) measure, if the LSH embedding results in a bias (estimating a slightly
different kernel), then the resulting index generated will be incorrect.



Title Suppressed Due to Excessive Length 3

2. We propose an LSH scheme to estimate the Nyström approximation of the
original input kernel and develop an algorithm for efficiently generating the
LSH embedding.

3. Finally we empirically evaluate our methods against state-of-the-art KLSH [12,
13] and show that our method is substantially better in estimating the origi-
nal kernel values. We additionally run statistical tests to prove that the sta-
tistical distribution of pairwise similarity in the dataset is better preserved
by our method. Preserving the similarity distribution correctly is particularly
important in applications such as clustering.

Our results indicate upto 9.7x improvement in the kernel estimation error and
the KL divergence and Kolmogorov-Smirnov tests [15] show that the estimates
from our method fit the pairwise similarity distribution of the ground truth
substantially better than the state-of-the-art KLSH method.

2 Background and Related Works

Table 1: Key Symbols
n, d Number of data points, Dimensionality of data

p, c Parameters: Number of eigenvectors to use, Number of extra dimensions
to use

κ(x, y) Kernel function over data points x, y (=< Φ(x), Φ(y) >)

Φ(x) Kernel induced feature map for data point x

Xi ith data point (ith row of matrix Xn×d)

Ki,j (i, j)th value of true kernel matrix Kn×n (= κ(Xi, Xj))

Yi p dimensional Nystrom̈ embedding of Φ(Xi) (ith row of Yn×p matrix)

K̂i,j Approximation of Ki,j due to Nystroöm embedding (=< Yi, Yj >)

Zi Our (p+ n) dimensional Augmented Nystrom̈ embedding of Φ(Xi)

K̂(Z)i,j Approximation of Ki,j due to Augmented Nystrom̈ embedding (=< Zi, Zj >)

Z′i Our (p+ c) dimensional Remapped Augmented Nystrom̈ embedding of Φ(Xi)

2.1 LSH for Cosine Similarity

A family of hash functions F is said to be locality sensitive with respect to some
similarity measure, if it satisfies the following property [6]:

Ph∈F (h(x) = h(y)) = sim(x, y) (1)

Here x, y is a pair of data points, h is a hash function and sim is a similarity
measure of interest. LSH for similarity measures can be used in two ways:
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1. Similarity Estimation: If we have k i.i.d. hash functions {hi}ki=1, then a
maximum likelihood estimator (MLE) for the similarity is:

̂sim(x, y) =
1

k

k∑
i=1

I(hi(x) = hi(y)) (2)

2. LSH Index Search: The concatenation of the aforementioned k hash func-
tions form a signature and suppose l such signatures are generated for each
data point. Then for a query data point q, to find the nearest neighbor,
only those points that have at least one signature in common with q need
to be searched. This leads to an index construction algorithm that results
in a sublinear time search. It is worth noting that a similarity threshold is a
mandatory parameter for an LSH index construction. Consequently, a bias
in its estimation may lead to a different index than the one intended based
on input similarity measure.

Charikar [6] introduced a hash family based on the rounding hyperplane
algorithm that can very closely approximate the cosine similarity. Let hi(x) =
sign(rix

T ), where ri, x ∈ Rd and each element of ri is drawn from i.i.d. N(0, 1).
Essentially the hash functions are signed random projections (SRP). It can be
shown that in this case,

P (hi(x) = hi(y)) = 1− θ(x, y)

π
= sim(x, y)

=⇒ cos(θ(x, y)) = cos(π(1− sim(x, y)))

where θ(x, y) is the angle between x, y. The goal of this work is to find a locality
sensitive hash family for the Nyström approximation κ̂ of any arbitrary kernel
κ that will satisfy the following property:

P (hi(x) = hi(y)) = 1− cos−1(κ̂(x, y))

π
(3)

2.2 Existence of LSH for Arbitrary Kernels

Kernel similarity measures are essentially the inner product in some transformed
feature space. The transformation of the original data into the kernel induced
feature space is usually non-linear and often explicit embedding in the kernel
induced space are unknown, only the kernel function can be computed. Shrivas-
tava et. al. [23] recently proved the non-existence of LSH functions for general
inner product measures. In spite of the non-existence of LSH for kernels in the
general case, LSH can still exist for a special case, where the kernel is normalized
– in other words the inner product is equal to the cosine similarity measure. As
mentioned in previous section, Charikar [6] showed that using signed random
projections, cosine similarity can be well approximated using LSH. To summa-
rize, LSH in kernel context is meaningful in the following two cases:
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1. The case where the kernel is normalized with each data object in the kernel
induced feature space having unit norm.

||Φ(x)||2 = κ(x, x) = 1 (4)

Here κ(., .) is the kernel function and Φ(.) is the (possibly unknown) kernel
induced feature map in RKHS.

2. In the case equation 4 does not hold, LSH does not exist for κ(., .). But it
exists for a normalized version of κ, say κN (., .), where:

κN (x, y) =
κ(x, y)√

κ(x, x)
√
κ(y, y)

(5)

2.3 Kernelized Locality Sensitive Hashing

KLSH [13] is an early attempt to build an LSH index for any arbitrary kernel
similarity measure. Later work by Xia et. al. [26] tries to provide bounds on
kernel estimation error using Nyström approximation [25]. This work also pro-
vides an evaluation of applying LSH directly on explicit embedding generated by
KPCA [21]. A follow up [12] to KLSH provided further theoretical insights into
KLSH retrieval performance and proved equivalence of KLSH and KPCA+LSH.

KLSH computes the dot product of a data point and a random Gaussian
in the approximate RKHS spanned by the first p principal components of the
empirical centered covariance operator. It uses an approach similar to KPCA to
find out a data point’s projection onto the eigenvectors in the kernel induced
feature space and it approximates the random Gaussian in the same space by
virtue of the central limit theorem (CLT) of Hilbert spaces by using a sample
of columns of the input kernel matrix. Let Xn×d denote the dataset of n points,
each having d dimensions. We denote the ith row/data point by Xi and i, jth

element of X by Xi,j . Let Kn×n be the full kernel matrix (Ki,j = κ(Xi, Xj)).
KLSH takes as input p randomly selected columns from kernel matrix - Kn×p.
The algorithm to compute the hash bits is as follows:

1. Extract Kp×p from input Kn×p. Kp×p is a submatrix of Kn×n created by
sampling the same p rows and columns.

2. Center the matrix Kp×p.
3. Compute a hash function h by forming a binary vector e by selecting t indices

at random from 1, ..., p, then form w = K
−1/2
p×p e and assign bits according to

the hash function

h(Φ(Xa)) = sign(
∑
i

w(i)κ(Xi, Xa))

One thing worth noting here is, unlike vanilla LSH, where an LSH estimator
tries to estimate the similarity measure of interest directly, in case of KLSH,
the estimator tries to estimate the kernel similarity that is approximated by the
KPCA embedding. The idea is that the KPCA embedding should lead to good
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approximations of the original kernel and hence KLSH should be able to approxi-
mate the original kernel as well. Alternatively, instead of directly computing the
dot product in RKHS, one may first explicitly compute the KPCA/Nyström
p−dimensional embedding of the input data and generate a p−dimensional mul-
tivariate Gaussian, and then compute the dot product. The two methods are
equivalent [12]. Next, we discuss why approximation error due to applying LSH
on kernels may be significant.

3 Estimation Error of LSH for Kernels

According to Mercer’s theorem [16], the kernel induced feature map Φ(x) can
be written as Φ(x) = [φi(x)]∞i=1 where φi(x) =

√
σiψi(x) and σi and ψi are

the eigenvalues and eigenfunctions of the covariance operator whose kernel is
κ. The aforementioned infinite dimensional kernel induced feature map can be
approximated explicitly in finite dimensions by using Nyström style projec-

tion [25] as described next. This can be written as Φ̂(x) = [φ̂i(x)]pi=1 where

φ̂i(x) = 1√
λi
< K(x, .), ui >. Here K(x, .) is a vector containing the kernel val-

ues of data point x to the p chosen points, λi and ui are the ith eigenvalue
and eigenvector of the sampled p × p kernel matrix Kp×p. Note that, both the
KPCA and Nyström projections are equivalent other than the fact that in case
of KPCA, Kp×p is centered, whereas in case of Nyström, it is uncentered. Essen-

tially, Φ̂(x) = PŜΦ(x), where PŜ is the projection operator that projects Φ(x)
onto the subspace spanned by first p eigenvectors of the empirical covariance
operator. Let Yn×p represent this explicit embedding of the data points.

In the next lemma, we show that the above approach results in a bias for
kernel similarity approximation from LSH.

Lemma 1. If ̂K(LSH)i,j is the quantity estimated by using LSH on Nyström

embedding, then ̂K(LSH)i,j ≥ K̂i,j.

Proof. Since K̂(LSH) is the quantity estimated by the LSH estimator for cosine
similarity on embedding Yn×p, then by equation 5

̂K(LSH)i,j =
YiY

T
j

||Yi||||Yj ||
=

K̂i,j√
K̂i,i

√
K̂j,j

(6)

where Yi is the ith row of Y.
By assumption, ||Φ(Xi)|| = 1, ∀i. Hence

K̂i,i = < PŜΦ(Xi), PŜΦ(Xi) > = ||PŜΦ(Xi)||2 ≤ 1, ∀i

(since PŜ is a projection operator onto a subspace). Specifically if i ∈ p, then

K̂i,i = Ki,i. Putting K̂i,i ≤ 1 in equation 6, we get the following.

̂K(LSH)i,j ≥ K̂i,j
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Thus, applying LSH to the Nyström embedding results in an overestimation
of the kernel similarity when compared to the Nyström approximation to the

kernel similarity. In terms of our goal, equation 3 will have K̂(LSH) instead of

K̂ (Nyström approximated kernel). Unlike K̂, K̂(LSH) does not approximate K
(true kernel) well, unless p is extremely large. This is not feasible since eigende-
composition is O(p3). Interestingly, the above bias ||Φ(x)−PŜΦ(x)|| depends on
the eigenvalue decay rate [28], that in turn depends on the data distribution and
the kernel function. Hence this error in estimation is hard to predict beforehand.

Additionally, another cause of estimation error, specifically for KLSH is due
to the fact that KLSH relies on the CLT in Hilbert space to generate the random
Gaussians in the kernel induced feature space. Unlike the single dimensional
CLT, Hilbert space’s CLT’s convergence rate could be much worse [20], implying
that the sample size requirement may be quite high. However, the number of
available samples is limited by p (number of sampled columns). Typically p is set
very small for performance consideration (in fact we found that p=128 performs
extremely well for dataset size upto one million).

We next propose a transformation over the Nyström embedding on which the
SRP technique can be effectively used to create LSH that approximates the input
kernel κ(., .) (K) well. Our methods apply to centered KPCA case as well.

4 Augmented Nyström LSH Method (ANyLSH)

In this section we propose a data embedding that along with the SRP technique
forms an LSH family for the RKHS. Given n data points and p columns of the
kernel matrix, we first propose a p+n dimensional embedding for which the bias
is 0 (LSH estimator is an unbiased one for the Nyström approximated kernel).
Since p + n dimensional embedding is infeasible in practice due to large n, we
propose a p + c dimensional embedding, where c is a constant much smaller
than n. In this case the estimator is biased, but that bias can be bounded by
setting c and this bound hence is independent of the eigenvalue decay rate of the
covariance operator. We provide theoretical analysis regarding the preservation
of the LSH property and we also give the runtime and memory cost analysis.

4.1 Locality Sensitive Hash Family

We identify that the major problem with using Nyström embedding for LSH is
the underestimation bias of the norms (K̂i,i) of these embedding. Hence, though
the estimates of the numerator of equation 6 are very good, the denominator
causes estimation bias. We propose a new embedding of the data points such
that the numerator will remain the same, but the norms of the embedding will
become 1.

Definition 1. We define the augmented Nyström embedding as the feature map
Zn×(p+n) such that Zn×(p+n) = [Yn×p Vn×n], where Vn×n is an n × n diagonal

matrix with the diagonal elements as
{√

1−
∑p
j=1 Y

2
i,j

}n
i=1

.
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Lemma 2. For Zn×(p+n), if K̂(Z)n×n is the inner product matrix, then for (i)

i = j, K̂(Z)i,j = 1 and (ii) for i 6= j, K̂(Z)i,j = K̂i,j

Proof. Case (i):

K̂(Z)i,j = ZiZ
T
j

=

p∑
k=1

Y 2
i,k +

n∑
l=1

V 2
i,l

=

p∑
k=1

Y 2
i,k +

(√√√√1−
p∑
j=1

Y 2
i,j

)2

= 1

Case (ii):

K̂(Z)i,j = ZiZ
T
j

=

p∑
k=1

Yi,kYj,k +

n∑
l=1

Vi,lVj,l

=

p∑
k=1

Yi,kYj,k + 0 (V is a diagonal matrix)

= YiY
T
j

= K̂i,j

Hence Zi gives us a p+n dimensional embedding of the data point Xi where
Zi approximates Φ(Xi). The inner product between two data points using this
embedding gives the cosine similarity as the embedding are unit norm and the
inner products are exactly same as that of Nyström approximation. Hence we
can use SRP hash family on Zn×(p+n) to compute the LSH embedding related
to cosine similarity. Essentially we have:

P (h(Zi) = h(Zj)) = 1− cos−1(K̂i,j)

π
(7)

Hence we are able to achieve the LSH property of the goal equation 3.

4.2 Quality Implications

The quality of an LSH estimator depends on (i) similarity and (ii) number of hash
functions. It is independent of the original data dimensionality. From equation 1,
it is easy to see that each hash match is a i.i.d. Bernoulli trial with success
probability sim(x, y) (s). For k such hashes, the number of matches follow a
binomial distribution. Hence the LSH estimator ŝ of equation 2 is an MLE for
the binomial proportion parameter. The variance of this estimator is known to be
s(1−s)
k . Therefore, even with the increased dimensionality of p+n, the estimator

variance remains the same.
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4.3 Performance Implications

The dot product required for a single signed random projection for Zi can be
computed as follows:

Zir
T
j =

p+n∑
l=1

Zi,lRj,l

=

p∑
l=1

Yi,lRj,l +
∑
k=1

nVi,kRj,p+k

=

p∑
l=1

Yi,lRj,l + Vi,iRj,p+i

Hence there are (p+1) sum operations (O(p)). Though Zi ∈ Rp+n, the dot
product for SRP (Zir

T
j ) can be computed in O(p) (which is the case for vanilla

LSH). Since Vn×n is a diagonal matrix, the embedding storage requirement is
increased only by n (still O(np)). However, the number of N(0, 1) Gaussian
samples required is O(k(p + n)), where as in case of vanilla LSH it was only
O(kp) (k is the number of hash functions). In the next section, we develop an
algorithm with probabilistic guaranty that can substantially reduce the number
of hashes required for the augmented Nyström embedding.

4.4 Two Layered Hashing Scheme

Next we define a p + c dimensional embedding of a point Xi to approximate
Φ(Xi). The first p dimensions contain projections onto p eigenvectors (same as
first p dimensions of Zi). In the second step, the norm residual (to make the
norm of this embedding 1.0) will be randomly projected to 1 of c remaining
dimensions, other remaining dimensions will be set zero.

Definition 2. Remapped augmented Nyström embedding is an embedding Z ′n×(p+c)
(∀i, Z ′i ∈ Rp+c) obtained from Zn×(p+n) (∀i, Zi ∈ Rp+n) such that, (i) ∀j ≤ p,
Z ′i,j = Zi,j and (ii) Z ′i,p+ai = Zi,p+i, where ai ∼ unif{1, c}.

Definition 3. C(i, j) is a random event of collision that is said to occur when
for two vectors Z ′i, Z

′
j ∈ Z, ai = aj.

Since this embedding is in Rp+c rather than Rp+n, the number of N(0, 1) samples
required will be O(k(p+ c)) , rather than O(k(p+n)). Next we show that using

SRP on Z ′n×(p+c) yields LSH embedding, where the estimator converges to K̂n×n
with c→ n.

Lemma 3. For Z ′n×(p+c), the LSH property that will be satisfied is

P (h(Z ′i) = h(Z ′j)) =

1

c

[
1−

cos−1(K̂i,j +
√

1−
∑p
l=1 Y

2
i,l

√
1−

∑p
l=1 Y

2
j,l)

π

]
+
c− 1

c

[
1− cos−1(K̂i,j)

π

]
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Proof. For the remap we used, collision probability is given by,

P (C(i, j)) =
1

c
(8)

If there is a collision, then the norm correcting components will increase the dot
product value.

P (h(Z ′i) = h(Z ′j)|C(i, j)) =

1−
cos−1(K̂i,j +

√
1−

∑p
l=1 Y

2
i,l

√
1−

∑p
l=1 Y

2
j,l)

π
(9)

If there is no collision, LSH will be able to approximate the Nyström method.

P (h(Z ′i) = h(Z ′j)|¬ C(i, j)) = 1− cos−1(K̂i,j)

π
(10)

We can compute the marginal distribution as follows:

P (h(Z ′i) = h(Z ′j)) = P (h(Z ′i) = h(Z ′j)|C(i, j))P (C(i, j))

+ P (h(Z ′i) = h(Z ′j)|¬ C(i, j))P (¬C(i, j))

Applying equations 8,9 and 10 above, we get the result.

There are two aspects to note about the aforementioned lemma:

1. According to Nyström approximation [25], as we increase p (higher rank

approx.), the quantity
√

1−
∑p
l=1 Y

2
i,l tends to 0 and the lemma leads to

the desired goal of equation 3, but at a computational cost of O(p3) for the
eigendecomposition operation. Of course increasing p improves the overall
quality of Nyström approximation itself, however in practice small values of
p suffice.

2. Interestingly, instead of p, if we increase c, then also we converge to the goal of
equation 3 as the first term of the lemma converges to 0. The computational
cost is O(k(p+c)) which usually is much less than O(p3). This is the strategy
we adopt and as we will show shortly, small values of c are sufficient even
for large scale datasets. Hence c can be used to bound the bias (difference
from the probability of equation 3).

5 Evaluation

5.1 Datasets and Kernels

We evaluate our methodologies on five real world image datasets varying from
3030 data points to 1 million and three popular kernels known to work well on
them. Summary of the datasets can be found in Table 2.
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Caltech101: This is a popular image categorization dataset [9]. We use 3030
image from this data. Following KLSH [12, 13] we use this dataset with the
CORR kernel [27].
PASCAL VOC: This is also an image categorization dataset [8]. We use 5011
images from this data. Following [7] we use the additive χ2 kernel for this data.
Notre Dame image patches: This dataset contains 468159 small image patches
of Notre Dame [10] and the image patch descriptors used are as per [24]. We use
the Gaussian RBF kernel on this data.
INRIA holidays: To test at large scale, we use 1 million SIFT as well as
1 million GIST descriptors from the INRIA holidays dataset [11]. Following
KLSH [12, 13] we use the additive χ2 kernel with this data.

Table 2: dataset and kernel details
Dataset Size Kernel

Caltech101 3030 CORR

PASCAL VOC 2007 5011 Additive χ2

Notre Dame image patches 468159 Gaussian RBF

INRIA holidays SIFT-1M 1000000 Additive χ2

INRIA holidays GIST-1M 1000000 Additive χ2

5.2 Evaluation Methodology

The focus of this work is accurate estimation of the input kernel similarity mea-
sure through LSH. For evaluating the quality of similarity estimation, we use
two approaches - (i) we take a sample of pairs from each dataset, and compute
the average estimation error directly and (ii) we use a sample of pairs from each
dataset, compute the similarity of the pairs, both accurately (ground truth) and
approximately (ANyLSH) and then compare the statistical distribution of the
pairwise similarity of ground truth with ANyLSH. The former gives a direct
measure of estimation accuracy, while the latter gives us insights on how well
the pairwise similarity distribution is preserved. In terms of execution times, our
algorithm performs the same as the baseline we compare against.

We use state-of-the-art KLSH as our baseline. We randomly sample 1000
pairs of data points from each dataset for our experiments. We use the values
64 and 128 for p, and vary h from 1024 to 4096 in steps of 1024. For ANyLSH,
we set c = 1000. In our evaluation, we see that c generalizes well to varying
data sizes. For KLSH, we set q = 16, 32 for p = 64, 128 respectively as per the
guideline in the source code [13].

5.3 Results

Similarity Estimation Comparisons Figures 1(a),1(c),1(e),1(g) and 1(i) re-
port the results on estimation error. We clearly see that our ANyLSH method
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(a) Caltech 101 (b) Caltech 101

(c) VOC 2007 (d) VOC 2007

(e) PATCH (f) PATCH

(g) SIFT-1M (h) SIFT-1M

(i) GIST-1M (j) GIST-1M

Fig. 1. Estimation error and KL Divergence are reported in the first and second
columns respectively for all datasets.
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outperforms KLSH in every single case by a large margin. The improvement of
estimation error varies from a minimum of 2.4x (Figure 1(e), p = 128, h = 1024)
to a maximum of 9.7x (Figure 1(e), p = 64, h = 4096), with average reduction
in error of 5.9x across all datasets. With fixed p, the estimation error of our
method decreases consistently across all datasets with the increase of hashes, as
should be the case per equation 2. Interestingly, for KLSH, there are multiple
cases when with the increase in hashes, the estimation error also increased. For
instance, in Figure 1(i), at p = 64, by increasing h from 2048 to 4096, KLSH’s
error increased from 0.076 to 0.078. This provides empirical evidence as well
that not only the estimates are off, but in case of KLSH, they are converging
towards a biased value as described in Lemma 1. Additionally note that our
average absolute error varies between 0.011− 0.038 across all datasets and there
is no trend that the error increases with larger datasets. This provides strong
empirical evidence to the theoretical insight that at fixed c (1000 in our case),
the average estimation error generalizes extremely well to different datasets of
varied sizes and different kernels. Though the error is a function of the eigenvalue
decay rate, it is upper bounded by ANyLSH.

Similarity Distribution Comparisons As second part of our qualitative eval-
uation, in this section, we investigate how well the pairwise similarity distribu-
tion of the data is preserved. This is particularly important in applications that
rely heavily on similarity distribution such as clustering. Our goal is to com-
pare the two distributions in a non-parametric fashion as we do not have any
prior knowledge of these distribution. Our first approach is to compare normal-
ized histograms (probabilities). We choose the popular KL divergence measure
to compare probability distributions represented by histograms. We discretized
both our data and the ground truth by splitting the similarity range 0− 1 into
fixed length bins of length 0.1. Figures 1(b),1(d),1(f),1(h) and 1(j) report the
KL divergence numbers. The improvement in terms of KL divergence is even
better, with upto two orders of magnitude improvement over KLSH. This im-
provement can be partly attributed to the discretization process – since we used
length 0.1 bins and our estimation errors are significantly less than 0.1, most of
our errors get absorbed in the discretization process. With KLSH’s error being
substantially higher than 0.1, it’s KL divergence becomes very high.

To account for the binning issue, we additionally run the non-parametric
Kolmogorov-Smirnov two sample test that is more suitable for comparing em-
pirical distributions of continuous data. This test is particularly challenging in
our setting as the test statistic is the supremum of absolute differences across
all values in the empirical CDFs. Thus, error in even a single region may result
in the failure of this test. Moreover, our proposed method being an approxi-
mate one, will always have some estimation error. The null hypothesis is that
the two samples come from the same underlying distribution and the alternative
hypothesis is that they are from different distributions. The results for p = 128
and h = 4096 are are reported in Table 3. All of the datasets (only exception
being Caltech) did not reject the null hypothesis, providing strong evidence that
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they are indeed from same underlying distribution. Note that, even the Caltech
result was very close to the threshold. For KLSH, in every single dataset the null
hypothesis was rejected and the p − values were extremely far away from the
threshold. This conclusively proves that applying KLSH to a dataset significantly
changes the pairwise similarity distribution.

Table 3: Results of Kolmogorov Smirnov tests on ANyLSH method. Critical
Value at 1% significance level was 0.073.

Dataset p-value Test statistic

Caltech101 0.006 0.076

PASCAL VOC 2007 0.716 0.031

Patch 0.565 0.035

INRIA SIFT-1M 0.603 0.034

INRIA GIST-1M 0.011 0.072

6 Future Works

There has been a wide range of works that build on the KLSH foundations
- improve quality through supervised learning [14, 17]; develop LSH for non-
metric measures [18]; We believe that these methods can be used in conjunction
with our hashing scheme as well to improve performance, and in future, we
propose to investigate them. Additionally, we plan to explore the case of non-
normalized kernel measures. Though LSH is known not to exist in the general
case for maximum inner product search, but augmented data embedding along
with modified LSH functions [23, 19] are known to work well for maximum inner
product search. We believe these ideas can be leveraged by our data embedding
framework to handle kernel similarities for the general case.

7 Conclusion

In this paper we proposed a locality sensitive hash family for arbitrary nor-
malized kernel similarity measures. We analytically showed that the existing
methods of LSH for kernel similarity measures based on KPCA/Nyström pro-
jections suffer from an estimation bias, specific to the LSH estimation technique.
In other words, these LSH estimates differ from the KPCA/Nyström estimates
of the kernel. This bias depends on the eigenvalue decay rate of the covariance
operator and as such unknown apriori. Our method, ANyLSH, can directly esti-
mate the KPCA/Nyström approximated input kernel efficiently and accurately
in a principled manner. Key to our method are novel data embedding strate-
gies. We showed that, given p columns of the input kernel matrix, the bias can
be completely removed by using a p + n-dimensional embedding. Since n can
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be rather large and also not fixed, we additionally propose a p + c-dimensional
embedding where c is fixed and much smaller than n. In our analysis we showed
that in this case the worst case bias can be controlled by the user by setting c.
Consequently, we overcame the short coming that resulted from the bias term
being unknown to the user apriori. Our methods, when compared to the state-
of-the-art KLSH improves the kernel similarity estimation error by upto 9.7x.
Further evaluations based on the KL divergence and Kolmogorov-Smirnov tests
provide strong evidence that pairwise similarity distribution is well preserved by
ANyLSH.
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