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ABSTRACT
Large scale sensor networks are ubiquitous nowadays.
An important objective of deploying sensors is to detect
anomalies in the monitored system or infrastructure,
which allows remedial measures to be taken to prevent
failures, inefficiencies, and security breaches. Most ex-
isting sensor anomaly detection methods are local, i.e.,
they do not capture the global dependency structure
of the sensors, nor do they perform well in the pres-
ence of missing or erroneous data. In this paper, we
propose an anomaly detection technique for large scale
sensor data that leverages relationships between sensors
to improve robustness even when data is missing or er-
roneous. We develop a probabilistic graphical model-
based global outlier detection technique that represents
a sensor network as a pairwise Markov Random Field
and uses graphical model inference to detect anomalies.
We show our model is more robust than local models,
and detects anomalies with 90% accuracy even when
50% of sensors are erroneous. We also build a syn-
thetic graphical model generator that preserves statis-
tical properties of a real data set to test our outlier
detection technique at scale.

CCS Concepts
•Computing methodologies → Anomaly detec-
tion; •Information systems → Data mining;
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1. INTRODUCTION
Sensors have become commoditized, and the result-

ing decreases in cost have led to their deployment in
large numbers. The data collected from these sensors
is processed and analyzed for monitoring and managing
infrastructure and resources. Anomaly detection tech-
niques applied to the collected data allow failures and
degradations to be quickly identified, enabling energy
savings and more efficient consumption of resources.
Some examples where sensors in large numbers are be-
ing increasingly used include: 1) Smart campuses and
buildings, where sensors measure air temperature, hu-
midity, building occupancy, lighting, etc., to manage
heating, ventilation, air conditioning (HVAC) and light-
ing systems, and to optimize use of resources such as
electricity, gas and water; 2) the transportation indus-
try, where, for instance, vehicle fleet management is
aided by continuous input from sensors attached to the
vehicles. This helps in vehicle maintenance, route op-
timization, driver safety, etc.; 3) utility infrastructure,
where sensors monitor power and water infrastructure,
for efficient resource management; 4) weather model-
ing and forecasting, where data from a large number of
distributed sensors measuring quantities like tempera-
ture, humidity, precipitation, wind speed, etc., is used
for short and long term weather prediction, and aids
with critical tasks such as disaster management plan-
ning, route optimization for air, ground and sea trans-
portation.

In all the above applications, outlier or anomaly de-
tection in the sensor data is an important task as it
helps to identify abnormal conditions that may result
from a failure (or impending failure), misconfiguration
or malicious activity. The most commonly used out-
lier detection methods are threshold-based. However,
a large category of anomalous behavior does not mani-
fest as a violation of a threshold. These are addressed
through model-based outlier detection techniques that
build statistical models of sensors [30], typically using
historical data. Most anomaly detection models have
the following shortcomings — 1) the inputs to the model
are local, that is, even when a large number of sensors
are deployed, the global structure and dependencies be-



tween these sensors are not leveraged; 2) the models are
not very robust, that is, if the input to the models is
erroneous or corrupted, they typically fail to function
correctly; and finally, 3) they do not perform well when
there is a large amount of missing data.

In this paper we develop a technique, based on prob-
abilistic graphical models, which utilizes the global de-
pendency structure among the sensors to detect out-
liers. The resulting model is much more robust in the
presence of erroneous data and missing sensor values
than local models. Our method consists of creating a
pairwise Markov Random Field (MRF) model from the
sensor network, where the graph structure is learned
from historical data. While most applications of MRF [4,
26, 11] use heuristics and domain knowledge to deter-
mine the edge potentials, we learn edge potentials from
historical data. We design the MRF topology such that
it is very amenable to running the belief propagation
inference algorithm on it. We develop a bipartite graph-
ical model that can reduce the number of active trails
in the MRF, making belief propagation converge faster
and to more accurate results.

While our method applies to any of the application
areas where sensors exhibit spatial dependency, includ-
ing sensor deployments in buildings [2], we demonstrate
its effectiveness on geographically distributed tempera-
ture sensors, mainly due to data availability. We apply
our method on data collected from 5,288 weather sta-
tions in California, and compare against several base-
line methods, based on local data, and others based on
the immediate neighborhood of a sensor. Results indi-
cate that our method outperforms the baseline methods.
Both in case of anomaly detection and missing sensor
value prediction, our method improves the accuracy as
much as 16% compared to the best baseline. Further-
more, we synthetically scaled the graphical model up
to 500,000 nodes and nearly 12 million edges and ob-
served that our technique scales almost linearly with the
number of cores. Lastly, we generated an even larger
graphical model with 5 million nodes and 120 million
edges and ran our algorithm on a single configuration
to show our method can handle a very large scale sensor
deployment.

Specifically, the contributions of this paper are as fol-
lows:

• We present a robust method for anomaly detec-
tion, using graphical models and belief propagation-
based sensor state inference.

• We show how sensor data can be modeled as an
MRF, where factors are naturally learned from
data (rather than based on experience of domain
experts), and the graphical model topology facili-
tates inference.

• To evaluate performance at scale, we build a syn-
thetic MRF generator that can generate arbitrarily
large graphical models while preserving statistical

properties of a MRF based on real sensor data.

• Results show that our method can predict missing
values with 90% accuracy even when 75% of the
data is missing; similarly, it can correctly identify
90% of outliers even when 50% of the sensors are
anomalous.

The remainder of the paper is organized as follows.
Section 2 introduces background information and re-
lated work. Section 3 describes our methodology, in-
cluding the inference algorithm, and the construction
of the graphical model from sensor data. Section 4
explains our sensor data collection and synthetic data
generation process. Section 5 provides our experimental
results. Lastly, Section 6 summarizes our work.

2. BACKGROUND AND RELATED WORK

2.1 Outlier detection
According to Hawkins, “An outlier is an observation

which deviates so much from the other observations as
to arouse suspicions that it was generated by a differ-
ent mechanism.” [9], Typically, it is assumed that data
is generated by some underlying statistical distribution
and the data points that deviate from that distribution
are called outliers. Outlier or anomaly detection tech-
niques are widely used in applications such as fraud de-
tection in financial transactions, email spam detection
and medical symptoms outlier detection. A survey of
anomaly detection techniques is presented in [3].

In this work we focus on identifying faults in sensor
observations in a large-scale sensor network. [30] pro-
vides a thorough overview of outlier detection methods
in sensor network data. According to this survey, the
types of outlier detection methods used on sensor data
include statistical-based, nearest neighbor-based, cluster-
based, classification-based and spectral decomposition-
based techniques. The outlier detection model we pro-
pose falls under the broad category of statistical-based
techniques, where the sensor data generation is assumed
to follow some statistical distribution and any observa-
tion that does not fit in that distribution is an out-
lier. The challenge is to learn the distribution of the
sensor data. Local techniques require the learning of
data distribution of sensors in isolation. They are only
able to capture the temporal dependency in observa-
tions, while global techniques try to learn the joint dis-
tribution of the sensor data and hence are able to cap-
ture the spatial dependency as well. More precisely,
our outlier detection model is based on the underlying
principles of statistical relation learning [7], as we de-
scribe in the next section. Outlier detection models may
be both supervised or unsupervised. For instance knn
based outlier detection techniques [21] are the most pop-
ular unsupervised methods, while classification based
outlier detection methods include SVMs [10], Random
Forests [29] and others. Outlier detection models can



be further classified into parametric and non-parametric
methods. Popular parametric models include learning
Gaussian-based models and doing hypothesis tests on
new data [14], while non-parametric techniques include
histogram learning and kernel density estimators [23].
The drawback of parametric models is that the model
assumptions (such as Gaussian distributions) may not
be realistic. Also, non-parametric models are easier to
generalize. Our model falls into the category of unsuper-
vised and non-parametric method. We do have a train-
ing phase, however, we do not require class labels, i.e.,
we do not need to know whether the sensor observations
are outliers or not. Our method uses a histogram based
approach.

2.2 Statistical Relational Learning
Statistical relational learning [7] (SRL) involves pre-

diction and inferences in the case where the data sam-
ples obtained are not independently and identically dis-
tributed. In most real world applications, there is a
complex structural relationship among the individual
variables of the system and there is uncertainty in the
relationship as well. SRL formalizes the structure of the
relationship and accounts for the uncertainty through
probabilistic graphical models. The end application
such as outlier detection, link prediction, topic mod-
eling etc. usually requires inference on the graphical
model. Our problem of detecting anomalies in sensor
observations fits nicely in the SRL model. Since prop-
erties such as temperatures of close by regions are re-
lated, there are strong spatial dependencies among the
sensor observations. There will be temporal dependen-
cies for observations on a single sensor as well, however
this can be studied in isolation using a local model. In
this paper we model the global spatial dependency in
the sensor network using a probabilistic graphical model
and the outlier detection involves doing inference on the
model.

One of the main challenges in SRL is designing the
graphical model. The graph needs to capture the de-
pendencies accurately, while not being excessively com-
plex to make inference hard. This trade-off between
accurately and cost of inference needs to be carefully
made based on the requirements of the application. The
two most popular graphical models are Bayesian net-
works and Markov networks (Markov random field). We
choose a Markov network as it is undirected and there
is no directionality of dependence in the sensor obser-
vations. Bayesian networks are appropriate in relations
resulting from causal dependency. The most common
methods of doing inference on Markov networks are (i)
MCMC based methods (e.g., Gibbs sampling) and (ii)
variational methods (e.g., loopy belief propagation) [27,
24]. MCMC based techniques such as Gibbs sampling
are known to be extremely slow with high mixing time,
therefore requiring an extremely high number of sam-
ples. We choose the variational method called loopy
belief propagation because of its simplicity and it is in

many cases much faster than MCMC based methods
(especially for slow mixing chains) [16]. Additionally,
with careful design of the graph, the performance of
the loopy belief propagation algorithm can be improved
significantly. Furthermore, compared to MCMC, loopy
belief propagation performs well on large scale, sparse
graphical models, such as those constructed from sen-
sors.

Another related work [28] for spatio-temporal event
detection uses conditional random fields (DCRF) and
belief propagation for the inference. However, DCRFs
assume specific functional form of the factors (poten-
tials) that can be factorized over a fixed number of fea-
tures [25]. We take a non parametric approach in this
work. Additionally, we learn the spatial dependency
graph structure whereas the aforementioned work fixes
the graph and can only learn the parameters. A graph-
ical model based approach has also been used to fore-
cast wind speeds [12], but again a strong assumption of
Gaussian processes has been made. In our target ap-
plication of sensor data analytics we will discuss meth-
ods of designing the MRF such that belief propagation
converges faster empirically. A survey of anomaly de-
tection techniques based on graphical representation of
data, including graphical models is presented in [1].

3. METHODOLOGY

3.1 Markov Random Field
A probabilistic graphical model (PGM) [13] combines

probabilistic dependency and reasoning with graph the-
ory. Often to simplify a modeling problem, random
variables are assumed to be independent, resulting in
loss of information. PGMs provide a means to express
and reason about these dependencies without making
the problem overly complex (e.g., assuming every vari-
able depends on all others). The graph structure pro-
vides an elegant representation of the conditional in-
dependence relationships between variables. We model
the data generative process of a large group of sensors
as a Markov random field (MRF), an undirected PGM
where each node in the graph represents a random vari-
able and edges represent the dependencies between the
random variables. A factor or potential function spec-
ifies the relationship between variables in each clique.
The joint distribution of all of random variables in a
model can be factorized into the product of the clique
factors through the Hammersley-Clifford theorem [22].

P (x1, x2, ..., xn) =
1

Z

∏
c∈C

φc(Xc)

where xi are the random variables; C is the set of all
maximal cliques in the graph; φc is the factor for clique
Xc; and Z is the normalizing constant, also called the
partition function. Markov Random fields have three
important characteristics; (i) Pairwise Markov Prop-
erty: Two random variables (represented by nodes in



the graph) are conditionally independent given all other
random variables xi |= xj |G\{xi, xj}; (ii) Local Markov
Property: A random variable (represented by a node
in the graph) is conditionally independent of all other
random variables given its direct neighbors in the graph
xi |= G\{xi∪nbr(xi)}|nbr(xi), where the set nbr(xi) con-
tains the neighbors of xi. (iii) Global Markov Property:
Two groups random variables (represented by nodes in
the graph) are conditionally independent given a set of
nodes that disconnects the groups of nodes Xi |= Xj |Xk,
where Xi, Xj and Xk are mutually exclusive groups of
nodes and removal of Xk disconnects Xi and Xj .

The Hammersley-Clifford theorem allows the joint
probability distribution of the graph to be factorized
into a product of the joint distributions of its cliques.
This is why we chose a pairwise Markov Random Field
(clique size of 2) as it helps bring the down the model
complexity significantly making inference scalable. Sec-
ondly, from the three MRF properties we observe that
between two nodes, if all the paths (called active trails)
can be broken, then by virtue of conditional indepen-
dence, the model will be further simplified making it
scalable to huge graphs. We achieve this by designing
the MRF graphical model such that many of the active
trails are broken making the inference procedure fast.

3.2 Loopy Belief Propagation
Belief propagation [19] is a commonly used, message-

passing based algorithm for computing marginals of ran-
dom variables in a graphical model, such as a Markov
Random Field. It provides exact inference for trees, and
approximate inference for graphs with cycles (in which
case it is referred to as loopy belief propagation). Even
though loopy belief propagation is an approximate al-
gorithm with no convergence guarantees, it works well
in practice for many applications [18] such as coding
theory [5], image denoising [6], malware detection [4,
26]. The loopy belief propagation algorithm to com-
pute marginals is shown in Algorithm 1.

1 Initialize all messages to 1;
2 while all messages not converged do
3 for i ∈{active vertices} do
4 read messages mji(vi), ∀j ∈ NB(i);
5 update own belief,

b(vi) = g(vi)
∏

j∈NB(i)mji(vi);

6 send updated messages mij(vj) =∑
vi

b(vi)
mji(vi)

φij(vi, vj), ∀j ∈ NB(i);

end

end
Algorithm 1: Loopy Belief Propagation

The algorithm works in two steps - (i) based on the
messages from the neighbors, a node updates its own
belief (line 5) and (ii) based on its updated belief, a
node sends out messages to its neighbors (line 6). In
the update step (i), a node i’s belief b(vi) is a product

of its prior belief g(vi) and messages received from its
direct neighbors. {vi} is a set that represents the dis-
crete domain of the probability distribution of random
variable i. In the send step (ii), a node i generates a
new message for node j for value vj by marginalizing
over the other values vi( 6= vj). Note that in this step
when a node i is creating a message for node j, it ig-
nores the message it received from node j itself. This is
achieved by dividing the factor by mji(vi). These afore-
mentioned steps are repeated until convergence (line 2
and 3). Convergence is achieved when there are no ac-
tive vertices left. An active vertex is one whose belief
has not converged yet.

The computational cost of a single iteration of Loopy
Belief propagation is O(n + e), where n is the number
of nodes and e is the number of edges. Note that in
reality the computational cost does not depend on all
nodes, rather for a specific iteration it is only dependent
on the active vertices and edges between them. Usually
the number of active vertices become much smaller as
the iterations progress. Since LBP does not have a con-
vergence guarantee, it is not possible to establish overall
computational complexity. However, we design the de-
pendency graph restricting active trails and empirically
show that this results in much faster convergence, al-
lowing scale up to large graphs containing millions of
nodes.

3.3 Graphical Model Design
While our method is generic and applies to any sensor

data, in this paper we use real data from temperature
sensors to detect outliers. We approach the problem by
building a generative model of the temperature sensor
data. Given the observations or evidence, this model
can be used to predict the temperature state of a par-
ticular sensor. We inject anomalies in sensors, and then
make predictions using our model. If there is a large
discrepancy between the observed value and the pre-
dicted value of a sensor, we conclude the sensor obser-
vation is an outlier. We can learn a similar model, e.g.,
a regression model, using features available locally at a
sensor, or even features obtained from sensor neighbor-
hood, however, that model will not be able to exploit the
global structure of the graph, particularly when large
number of observations are missing.

3.3.1 Learning the dependency graph topology
We learn the spatial dependency graph structure from

historical data. This is an offline process. For each pair
of sensors we compute the frequency of the co-occurring
observations using the historical data and normalize it
to a 0-1 scale. We call this the dependency score. For
each pair of vertices we get a vector of such scores. If
the maximum value in the dependency score vector ex-
ceeds a certain threshold, we keep the edge between
the pair of vertices. This threshold parameter is ex-
perimentally determined. For our specific temperature
sensor network application, we use fixed width binning



to discretize the temperature domain into sixteen inter-
vals of five degrees F each. Since each sensor can report
one of the sixteen states, a pair of sensors can report
16X16 = 256 jointly occurring states. In other words,
the dependency score vector is of length 256.

3.3.2 Creating Markov Random Field
Given a graph topology, we now need to convert it

to a pairwise Markov Random Field. Since the factors
in a pairwise MRF essentially capture the dependency
among the nodes and need not be proper probability
distributions, we can directly use the dependency score
vectors as the factors in the MRF. This gives us a way
for factor construction for each edge in the MRF. In
terms of the vertices, every sensor node in the depen-
dency graph has two corresponding vertices in the MRF:
1) observed temperature of that sensor (observed state);
and 2) true temperature at that location (hidden state).
Next, we show two different MRF graph construction
designs and discuss the benefits of the design choices.
Figures 1 and 2 show the two design choices for the
graph construction. The circular even numbered nodes
represent the random variable for hidden true state of
the sensor and the square odd-numbered nodes repre-
sents the random variable for the observed state of the
sensor. Every sensor is hence represented by two ran-
dom variables.
MRF Topology 1: In the first design choice (Fig-
ure 1), if there is an edge between two sensor nodes in
the dependency graph, we add an edge between the cor-
responding true state nodes in the MRF. The factor on
that edge will be the dependency score vector between
the pair of sensor nodes in the original graph. This im-
plies the true temperatures of the sensor locations are
related according to the learned dependency graph, and
the observed state of every sensor depends on the true
state of that location. For every sensor node in the orig-
inal dependency graph we add an edge between the true
state and the observed state of the same sensor in the
MRF. Thus, if there were N nodes and E edges in the
original graph, the pairwise MRF will contain 2N nodes
and E +N edges.
MRF Topology 2: In the second approach (Figure 2),
instead of the true states of each sensor location being
dependent on each other, the true state of a sensor loca-
tion depends on the observed states of its’ neighboring
sensors. In other words, we form a bipartite graph of
the true states and the observed states. For every sen-
sor node in the original dependency graph we introduce
an observed state and true state for that sensor in the
MRF. We connect the observed state and true state as
before. For every edge i, j in the dependency graph, we
add an edge between the observed state of i and the
true state of j, and another edge between the observed
state of j and the true state of i to form the bipartite
graph.

Figure 1: MRF Topology 1
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Figure 2: MRF Topology 2
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3.3.3 Discussion
At first glance, design choice 1 seems to be the better

choice as it captures the intuitive dependencies. Specif-
ically, the true temperatures of the nearby sensor lo-
cations should be heavily dependent and the observed
state of any sensor should be highly dependent on the
true state of the location. This is exactly the depen-
dency captured by the first design choice. However,
this design choice has some practical problems. Since
all of the random variables corresponding to the true
states are hidden (not observed) and these are the ones
connected in the MRF, the MRF will have a lot of loops
with hidden states. In other words there will be more
and longer active trails in this MRF design. As a result,
the loopy belief propagation algorithm is likely to take
a long time to converge. In fact, in presence of loops,
the belief propagation algorithm does not have conver-
gence guarantees. Even if it converges, it could be to
a local optima. This is why design choice 1, although
intuitively very appealing is not a very practical one.
Design choice 2 on the other hand largely overcomes
the shortcomings of choice 1. Since we formed a bi-
partite graph between the hidden random variables and
the observed ones, the presence of an observation on
the observed random variables breaks the active trail in
the loop. Thus, as the number of observations increase,
the number of active trail loops in the MRF decreases.
The best case scenario is when we have observations
for all the designated observed state variables (when all
sensors are functioning). In this situation there are no
active trail loops, and as a result belief propagation con-
verges in two steps. As long as the observed values are



Topology 1 Topology 2
Accuracy (%) 88.9 97.5
Time (secs) 663.5 27.6

Table 1: 5% missing value prediction

Topology 1 Topology 2
Accuracy (%) 85.1 97.6
Time (secs) 60.1 45.5

Table 2: 50% missing value prediction

correct, the converging state is the global optima. Note
that, in practice, a significant number of observations
may be missing. Even as missing data increases, design
2 still will have less active trails as compared to design
1 and it will converge faster to more accurate results.
We empirically verify this by running belief propagation
on a single instance of a test graph generated from real
sensor data, described in the next section. We evalu-
ate both design choices under two configurations – 5%
missing value and 50% missing value. The results are
listed in Table 1 and Table 2, respectively.

Note that when there is no missing sensor data, exact
inference is possible in topology 2 by considering the
joint probability distribution of a node and its neigh-
bors. The joint distribution can be factored into pair-
wise factors and then marginalized to get the proba-
bility distribution of the node. When missing data is
low, this approximation can be used at the cost of some
accuracy.

4. SENSOR DATA

4.1 Data Collection
We chose a temperature sensor network as an ap-

plication in this work as it was possible to collect a
large, real data set. We identified about 5,288 Cali-
fornia weather stations from weatherunderground.com
and collected raw data from the stations for a month.
We used a python script to collect raw data on a daily
basis for each of the stations for the entire month. Once
the raw data was downloaded, we used a second script
to extract the time of day, temperature, pressure, hu-
midity and wind speed on an hourly basis for each of
these stations. We use 20 days data for training our
model. We used a third script to learn the pairwise de-
pendencies between each pair of sensors and create the
dependency graph. Since we check all pairs of sensors
for dependency, we parallelized the script to reduce the
time required by the offline training procedure. Lastly,
we used a fourth script to convert the dependency graph
to the pairwise MRF (both design choices).

4.2 Synthetic graphical model generator
The MRF graphical model of the real California sen-

sor network is approximately 10,576 vertices and 234,968

edges. This is still quite small to understand whether
our model will scale to really large scale sensor networks
that we expect will be commonplace. Therefore, we de-
velop a synthetic graphical model generator which can
generate arbitrarily large graphical models while pre-
serving the properties of the original (smaller) graphical
model. The main requirement of our synthetic graphi-
cal model generator is that it should generate a Markov
Random Field with similar joint probability distribu-
tions as the original smaller seed model. The second
requirement is to create a set of observations for the
MRF which can serve as the ground truth.

There is a lot of prior work on graph generation mod-
els that can preserve the topology (degree distribution),
as well as co-related vertex attributes. For example, this
could be done using the accept-reject sampling tech-
nique [20]. Unfortunately, these generic techniques are
not suitable for generating MRFs. Specifically, MRFs
are non-attributed graphs, where each vertex represents
a random variable and each edge represents a factor po-
tential table. A sensor node in a sensor network graph
may observe multiple attributes, but when represented
as a MRF, each attribute will become a vertex in the
MRF and all dependencies will be captured by adding
edge factor potential tables. We can still use standard
techniques [17] to create a larger graph while preserving
the degree distribution of the original MRF. To generate
the edge factors and also to generate multiple instances
of the graph with different observations that will follow
the underlying joint probability distribution, we devel-
oped the following technique:

1. From the original dependence graph we extract the
degree distribution.

2. From the original dependence graph we extract the
dependence score vector distribution.

3. We create a larger graph where the nodes follow
the same degree distribution and the edges fol-
low the same dependence score vector distribution.
The underlying assumption here is that the num-
ber of neighbors of a node is independent of the
strength of the dependency with each neighbor,
which is a reasonable assumption to make.

4. We then randomly select a small percentage (less
than 10) of the nodes and randomly assign tem-
perature values to them. Again the idea is, since
the percentage of selected nodes is very small, the
temperatures at those locations should be fairly
independent of each other. Hence randomly as-
signing temperatures will not conflict with the de-
pendency structure of the graph.

5. We create an MRF (choice 2) from the syntheti-
cally generated larger graph and run belief prop-
agation to predict the state of the entire graph.
This serves as the ground truth observations. We
empirically show on the real graph that with 90%



missing data, the rest of the graph can be recon-
structed with more than 85% accuracy. We believe
the same should hold for the synthetically gener-
ated larger graph as it has the same properties of
the real graph.

5. EMPIRICAL EVALUATION
We used an HP ProLiant DL980 server with 80 CPU

cores to conduct our experiments. Each CPU core has
a speed of 1.9 GHz. The server has 2 TB of mem-
ory. Our belief propagation algorithm is developed as a
C++ application on top of an open source graph ana-
lytics framework called GraphLab/Powergraph [8, 15].
Note that although we use a large memory machine, we
could have equally well run GraphLab on a cluster of
commodity machines. For baselines and other function-
alities such as data collection and graph generation, we
use python scripts.

5.1 Experimental methodology

5.1.1 Quality evaluation
We run our belief propagation-based outlier detec-

tion algorithm on the real temperature sensor dataset.
The MRF we generated had 10,576 vertices and 234,968
edges. We collected hourly observations for a month.
We used the first 480 hourly observations for training
the MRF (learning the graph structure and factors).
We used a threshold of 0.5 for keeping an edge in the
graph. In other words, after we learn the factor table for
a pair of sensors, if the maximum value in the table is
greater than 0.5, we introduce an edge between the pair
of sensors. We also tried a lower threshold (0.4), which
produces similar results but significantly increases the
number of edges (over 1 million). After learning the
MRF, we use the next 50 hours’ observations to instan-
tiate 50 such graphs and test our algorithm on each of
the 50 instantiations.

Based on inference, our method predicts a sensor
value. We evaluate our method’s accuracy in two sce-
narios – i) when data is missing; ii) when sensor val-
ues are erroneous due to anomalies, data corruption, or
malicious activity. Since a sensor value is considered an
anomaly if its predicted value significantly deviates from
its observed value, we use the prediction accuracy as a
proxy for accuracy of anomaly detection. Even when
the number of sensors with missing data, or anomalous
data is large, we are still able to accurately recover their
correct values, as we show in Section 5.
Predicting missing sensor values: To evaluate ac-
curacy in this case, we randomly delete a percentage
of sensor observations from the MRF, and then try to
predict them. We do this for all the 50 test graphs we
instantiated. We measure quality by the accuracy of
predicting the missing values averaged over all missing
values over all 50 graphs. As mentioned earlier, we di-
vide the temperature range into 16 discrete bins. We

allow the prediction to be off by at most a single bin to
be considered correct. We vary the percentage of miss-
ing observations from 5% to 90% and report quality for
each setting. Note that there is already missing data in
the original data set.
Detecting anomalies/outliers: To evaluate accuracy
when there is anomalous data, we randomly inject out-
liers to a percentage of sensor observations and then try
to detect them. The outliers we inject are random tem-
perature values. Again we predict the true state of these
sensors and see whether they match (the difference can
be at most one adjacent bin) with the observed values
(the injected outliers). If the values do not match, then
we are able to successfully detect the observation as an
outlier. We report the average outlier detection accu-
racy over all 50 test graphs. We vary the percentage
of outliers from 5% to 90% and report quality for each
setting. Note that the data we introduce outliers to al-
ready has a significant amount (about 25%) of missing
data as well.

5.1.2 Performance evaluation
We generate a larger graphical model with 500,000

nodes and 12 million edges using our synthetic graphi-
cal model generator, which takes as input the graphical
model based on real data. We seed 1% of the nodes
with random observations and run belief propagation
to evaluate the performance. We measure performance
in terms of time taken by the inference engine. We
also measure the scale out performance by increasing
the number of threads in GraphLab from 1 to 32 and
observing the effect on the running time. We test two
versions of the belief propagation algorithm, the bulk
synchronous processing version and the dynamic asyn-
chronous version.

5.1.3 Baselines for quality comparisons
We compare our work against four different baselines:

1. Local regression: We learn a sensor specific local
model, which implies each sensor’s model is agnos-
tic of the rest of the sensor network. A sensor can
only use its historical data to make predictions.
We learn multi-variate linear regression models for
each sensor. The features of the regression are
previous two hour’s temperature, current pressure,
current humidity and current time of day. The
model predicts the current temperature. We inject
outliers in the input features (previous two hour’s
temperature) and see how it affects the quality.
We vary the percentage of outliers from 5% to 90%
and report the impact in quality. Note that this
baseline is only applicable to the outlier detection
application.

2. Neighbors-mean: Here instead of building a model
based on a sensor’s data alone, we build a model
using a sensor’s data and its neighbors’ data. Note
that to decide which sensors are neighbors, we still



use our MRF graph learning process as described
earlier. This model simply averages the observed
values of its neighbors as its predicted value. This
model is used for both missing value prediction as
well as outlier detection. We vary the percentage
for both tasks from 5% to 90% and compare the
results.

3. Neighbors-median: This model is essentially the
same as the Neighbors-mean. The only difference
is instead taking average, this model predicts its
own value as the median of its neighbors’ observed
values. This model is likely to be more robust in
presence of outliers.

4. Neighbors-wmean: Here we take the mean of
the neighbors, but weigh a neighbor’s value by the
normalized maximum value in their joint factor
table.

A more complex model could be trained on a node’s
local and neighbors’ features. However, as missing or
anomalous data increases – when our method is most
advantageous – the performance of such a model is likely
to severely degrade.

5.2 Results
Figures 3 and 4 show the accuracy of correctly pre-

dicting sensor values using the baseline methods and
our proposed method (marked BP) for increasing per-
centage of missing values and increasing percentage of
anomalous values, respectively.

In the case of predicting missing sensor observations
(Figure 3), our belief propagation-based model performs
very well. The prediction accuracy decreased only 10%
(from 95% to 85%) when the percentage of missing sen-
sor observations was increased from 5% to 90%. This
shows the efficacy of learning the factors of the MRF
from historical data as compared to the more tradi-
tional way where a domain expert determines the graph
structure and the factors. Even when only 10% of the
sensors had observations available, the whole network
could be reconstructed with 85% accuracy. This is due
to the ability of the technique to learn the dependen-
cies among sensors correctly through the edge factors in
MRF. This is why the dependency among two sensors
that are not immediate neighbors can still be modeled
through the series of edge potentials connecting them.
As expected, the median-based method performs bet-
ter than the mean-based method. Our method is as
much as 16% better than the best baseline (Neighbors-
median).

The results for the case where an increasing percent-
age of outliers are introduced into the data set are quite
interesting. We see from Figure 4 that our belief propa-
gation based model’s accuracy is very high (about 90%)
when the percentage of injected outliers is less than
50%. Once the number of outliers increases beyond
50%, there is a substantial degradation in accuracy. We

Figure 3: Model accuracy results – Data with
missing values.
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believe this is because belief propagation is a gossip-
based, message passing algorithm. As a result, once the
number of outliers is a majority, the global belief con-
verges to the outlier values. When the number of cor-
rectly observed values are a majority, most beliefs still
converge to correct values. However, once the num-
ber of outliers become the majority, the model starts
degrading rapidly. While our method performs better
than the baseline methods up to around 80% outliers,
beyond that it does worse. This is expected due to the
global impact of the outlier nodes in BP. In the local re-
gression based model, almost any injected outlier results
in an incorrect prediction. This is why the degradation
in quality is roughly linear with the increase in outlier
percentage. Another point to note is that the degrada-
tion in accuracy is more severe with outliers than with
missing data. This is true for both the baselines and
our method. Here again, our method is as much as 16%
better than the best baseline (Neighbors-median).

The performance numbers are shown in Figures 5
and 6. We vary the number of threads from 1 to 32
and report the scale-out pattern of the belief propaga-
tion inference engine on GraphLab for two MRFs - 1)
10,576 vertices and 234,968 edge real dataset and 2)
500,000 vertices and 12 million edge synthetic dataset.
While the asynchronous version performs better than
the synchronous version, both version performed quite
well with increasing parallelism, as shown in Figures 5
and 6. On the largest graph (5M nodes, 120M edges)



Figure 4: Model accuracy results – Data with
anomalies/outliers.
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Nodes, Edges Memory (GB)
11K, 235K 3.5
500K, 12M 160
5M, 120M 1,600

Table 3: Memory consumption of belief propa-
gation

the synchronous version using 32 threads completed in
12 hours. Table 3 provides the memory requirements
of each graph. These results indicate that the memory
consumption scales linearly with the size of the graphi-
cal model.

6. CONCLUSIONS
We developed techniques for anomaly detection in

sensor data as well as for predicting missing sensor ob-
servations. We presented a novel way for learning the
dependence structure among sensors and represented
it using a bipartite Markov Random Field graphical
model which is very amenable to the belief propaga-
tion inference algorithm both in terms of accuracy and
performance. We tested our algorithm on real tempera-
ture sensor data collected from 5,288 California weather
stations. Results showed that our method can predict
missing values with 90% accuracy even when 75% of the
data is missing; similarly, it can correctly identify 90%
of outliers even when 50% of the sensors are anoma-
lous. Our algorithm provides most benefit when large
amounts of data is missing by exploiting transitive de-

Figure 5: Runtimes for loopy BP on MRF with
11K nodes, 235K edges.
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Figure 6: Runtimes for loopy BP on MRF with
500K nodes, 12M edges.
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pendencies through use of graphical models and belief
propagation. We also developed a synthetic graphical
model generator which can generate a large MRF while
preserving the properties of a smaller graphical model.
We use it to generate a 500,000 nodes and 12 million
edges graphical model to show scalability of our method.
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